
IN3032UG: Ethernet Debugger User Guide

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and
use of Intona products. To the maximum extent permitted by applicable law: (1) Materials are made
available ”AS IS” and with all faults, Intona hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS,
EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
(2) Intona shall not be liable (whether in contract or tort, including negligence, or under any other theory
of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with,
the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or
consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered
as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or
Intona had been advised of the possibility of the same. Intona assumes no obligation to correct any errors
contained in the Materials or to notify you of updates to the Materials or to product specifications. You
may not reproduce, modify, distribute, or publicly display the Materials without prior written consent.
Intona products are not designed or intended to be fail-safe or for use in any application requiring fail-safe
performance.

© Copyright Intona Technology GmbH, Germany.
Intona and other designated brands included herein are trademarks of Intona in Germany and other
countries. All other trademarks are the property of their respective owners.

Website: https://intona.eu

https://intona.eu

Contents
1 Introduction 4

1.1 Features . 4
1.2 Requirements . 4
1.3 Restrictions . 5
1.4 Firmware Changelog . 5

1.4.1 Firmware 1.09 . 5
1.4.2 Firmware 1.08 . 5
1.4.3 Firmware 1.06 . 5
1.4.4 Firmware 1.00 . 6

1.5 Host Tool Changelog . 6
1.5.1 Host tool git master . 6
1.5.2 Host tool v1.6 (unreleased) . 6
1.5.3 Host tool v1.5 (bfafb93, windows build 72) . 6
1.5.4 Host tool v1.4 (60a3f48, windows build 66) . 7
1.5.5 Host tool v1.3 (cfbdb79, windows build 64) . 7
1.5.6 Host tool v1.2 (ff97f53) . 7
1.5.7 Host tool v1.1 (686fe4f) . 8
1.5.8 Host tool v1 (f5eed9c) . 8

2 Hardware Setup 9
2.1 LED Meaning . 9

2.1.1 Port LEDs . 9
2.1.2 Main LED . 9

3 Software Installation 10
3.1 Linux . 10
3.2 macOS . 10
3.3 Windows . 10
3.4 Windows 7 . 11
3.5 Verifying Device Access . 12
3.6 Wireshark extcap Setup . 12

3.6.1 Linux, macOS . 12
3.6.2 macOS (app bundle) . 13
3.6.3 Windows . 13

3.7 Firmware Update . 13
3.7.1 Unix-like . 13
3.7.2 Windows . 14

4 Capturing 15
4.1 Wireshark extcap . 15

4.1.1 Capturing Options . 15
4.1.2 Wireshark extcap Toolbar . 15

4.2 Directly Starting Wireshark from Host Tool . 15
Example . 15

4.3 Statistics . 16
4.4 Capturing to a File . 16

Example . 16
4.5 Selecting the Device . 16
4.6 Configuring the Buffer Size . 16

5 Other Features 17
5.1 PoE Passthrough . 17
5.2 PTP Timestamps . 17

2

Contents

5.3 Supported Command Line Options . 17
5.4 Interactive Command Line . 18
5.5 Scripting . 18

Example . 18
5.6 Supported Commands . 18
5.7 IPC Interface . 19

5.7.1 Windows . 19
5.7.2 UNIX (Linux/Mac) . 20
5.7.3 Protocol . 20
IPC example . 20
Terminal 1 . 20
Terminal 2 . 20
Log message example . 21

5.8 Identify Function . 21
5.9 Latency Tester . 21

5.9.1 Introduction . 21
5.9.2 Instructions . 21
Sender setup . 22
Receiver setup . 22
Receiver file output . 22
Terminal Output of Latency Tester Example Run . 23
Example Output File (Partial) . 24

5.10 Packet Injection . 24
Example . 25
5.10.1 Command parameters . 25

5.11 Blocking Ports . 26
5.12 Packet Disruption . 26

Example . 26
5.12.1 Command parameters . 27

5.13 MDIO Access . 27
5.13.1 Raw MDIO access . 27
5.13.2 Changing PHY Ethernet Speed . 27

5.14 Device Settings . 28

6 Known Problems 28

7 Further Readings 29
7.1 White Papers . 29

7.1.1 Ethernet Debugger Timing . 29
7.2 Statements . 29

7.2.1 Letter of Volatility . 29

3

1 Introduction

1 Introduction

The Intona Ethernet Debugger is a device to capture packets between two Gigabit Ethernet devices. It
provides two ethernet ports, and each port forwards all traffic to the other port, as well as to a PC con-
nected via USB. The intended purpose is low level debugging of anything above the ethernet physical
layer, mainly using Wireshark and similar protocol analyzers. It helps when developing your own pro-
tocols layered on top of ethernet, developing your own MAC, or just for observing what is going on on
your network.

1.1 Features

This device can log complete ethernet packets as received by the PHY. There is no processing of captured
packets – preamble, SFD, and FCS are all left intact. Packets with incorrect CRC sums are not discarded.
Ethernet packetswhich violate the specification are captured as far it is possible. Somenormally invisible
low level details are explicitly logged, such as interpacket gaps and CRC errors. Jumbo frames (ethernet
packets longer than 1500 bytes) are supported and fully captured up to 16KB size.

Capture output is directly streamed to the PC. There is no kernel device driver. The device is accessed
through a libusb userspace driver. You do not necessarily need elevated privileges. Installing the device
will not destabilize your system. In particular, the device is not exposed as network device. This has the
advantage that your OS will not mess with it. Neither will it attempt to drop or filter packets received
through it, nor will it attempt to send random packets to it (ARP etc.). The latter would show up in
Wireshark, and confuse your development efforts.

Capture can be directly started fromWireshark (if installed correctly). The userspace driver also provides
a command line interface, which can be used to access advanced feature. An IPC interface is provided
for use cases like scripting.

The debugger can block packets in one or both directions, corrupt packets, inject new packets. This is
interesting for development and security research. (For example, you can test resilience of your ethernet
connected device or software against random packet drops, test its behavior on flooding, or implement
a network stack fuzzer.)

The device does not require or force firmware updates. No special kernel or device drivers are required
onWindows, macOS, or Linux. Installation of the userspace driver is minimally intrusive, or can be used
without system-wide installation.

There are many other features. See Other features section.

1.2 Requirements

The software works on Windows, Linux, and macOS. We provide an installer for Windows. Windows
10 64 bit is required. Windows 7 may work as well (extra steps required, see installation instructions).
For macOS, a homebrew tap is provided1. For Linux, source code and build instructions are provided2,
which should work on any Linux distro.

USB 3.0 or later host and cable are recommended. USB 2.0 may work in low bandwidth scenarios. Using
an USB hub, and/or connecting multiple USB devices to an USB hub/host may reduce the maximum
bandwidth at which capture is possible without capture overflows.

1https://github.com/intona/homebrew-ethernet-debugger
2https://github.com/intona/ethernet-debugger#build-instructions

4

https://github.com/intona/homebrew-ethernet-debugger
https://github.com/intona/ethernet-debugger#build-instructions

1 Introduction

1.3 Restrictions

Ethernet is intercepted by putting two PHYs between the two ports. There is no direct connection be-
tween the ethernet TX/RX wires of the ports. Each PHY negotiates the ethernet connection separately.
No link can be established without USB power.

Old firmware (before 1.06) requires the user to set the ethernet speed manually if the devices connected
to the debugger’s ports negotiated different ethernet standards (for example 100 MBit vs. 1 Gb).

The PC needs to be fast to capture at full speed. Capturing in real time with maximum ethernet band-
width directly to Wireshark or a slow hard disk may not be possible. (This is due to host performance
problems outside of our control.) Packet buffer overflows should be expected when operating near max-
imum bandwidth. There is no hardware packet filter.

1.4 Firmware Changelog

The firmware version is reported in the bcdDevice field in the USB device descriptor, or can be deter-
mined by using the ”hw_info” command in the host tool.

1.4.1 Firmware 1.09

Updating to host tool v1.5 is recommended.

Bug fixes

• Fix hardware FIFO overflow problems with high bandwidth and very small packets (possibly out-
of-spec)

• Fix capture corruption problems in some rare low bandwidth capture scenarios

1.4.2 Firmware 1.08

Updating to host tool v1.3 is recommended.

Bug fixes

• Fix occasional packet corruptionwith some links in 100MBitmode (this affects both packet capture
and ethernet communication)

• Hopefully fix 10 MBit mode
• Improve speed settings handling (always enable auto negotiation and control advertisings instead)
• Work around a FX3 issue that made firmware updates under USB 2 very slow

Potential incompatibilities and problems

• The ”inject” command now works only if both links are connected and use the same speed mode

1.4.3 Firmware 1.06

Updating to host tool v1.2 is recommended.

Bug fixes

• Fix device becoming unable to capture packets on FIFO overflows

Potential incompatibilities and problems

• This is compatible down to host software v1, but host software v1.2 is recommended; there may be
strange behavior with host software v1 in certain cases

• The device accesses some MDIO registers automatically now, instead of leaving the host software
in full control

5

1 Introduction

New features

• Add autospeed mode (do not require user to manually adjust each PHY’s speed if they have negoti-
ated different speeds)

• The autospeed setting is persistently stored on the device
• Improved packet timestamp accuracy

1.4.4 Firmware 1.00

• Initial release.

1.5 Host Tool Changelog

The host tool’s version can be determined with the ”hw_info” command, or simply running ”nose --
version”.

Note: you can also look at the public git repository’s commit log.

1.5.1 Host tool git master

Unreleased, but publicly available. (Also picked up by Homebrew formulae.)

May be referenced as host tool v1.6 in this document.

1.5.2 Host tool v1.6 (unreleased)

Bug fixes

• Windows: restarting capture in Wireshark extcap mode often didn’t work and showed errors
• Try to behave better if opening the device failed in Wireshark extcap mode
• Windows: bundle firmware v1.09 (update needs to be started manually with firmware-update.bat)

1.5.3 Host tool v1.5 (bfafb93, windows build 72)

Potential incompatibilities and problems

• Improvements to packet parsing (including firmware v1.09 specifics), which should not cause any
problems, but could

• Change ”Bytes captured” display in the capture stats, uses different rounding

Bug fixes

• Skip possibly old data when starting capture
• Fix description of some hw_info fields
• Fix undefined behavior in USB error handling path

New features

• Add --nopad, --bw-bytes, --bw-packets parameters to ”inject” command
• Add --update parameter to ”hw_info” command
• Add --capture-speed-test command line option

(The Windows build was incorrectly tagged as v1.4, but used the correct commit bfafb93.)

6

1 Introduction

1.5.4 Host tool v1.4 (60a3f48, windows build 66)

Potential incompatibilities and problems

• Change auto-exit behavior (should be mostly the same for most users, but use with scripting might
be affected)

• Change --exit-on option in an incompatible way

Bug fixes

• Fix sporadic hangs when nose exits (these could even hog the USB device and prevent restarting
capture)

• Handle unusual preamble lengths better (for example, do not cut off data bytes at the start of the
packet on short preamble)

New features

• Option to strip FCS (CRC field) from captured data (--strip-fcs)

1.5.5 Host tool v1.3 (cfbdb79, windows build 64)

Bug fixes

• Correct doubled injector packet count reported by hw_info command
• Work around problems with libreadline 8.1
• Fix ”inject” command (may need firmware 1.08 for larger packets)
• Adjust maximum packet size capture limits

New features

• Latency tester feature
• Tab completion (if built with readline; dysfunctional on Windows)
• New options: --cmd, --run, --exit-on, --exit-timeout

1.5.6 Host tool v1.2 (ff97f53)

Updating to firmware 1.06 is recommended.

Potential incompatibilities and problems

• Firmware update is now invoked differently
• Changes to inject and disrupt command parameters

Bug fixes

• In Wireshark extcap mode, terminate properly if no packets were captured

New features

• Full support for firmware 1.06
• Slightly improved link status reporting
• Extend capabilities of inject and disrupt commands
• ChangeUSBdevice name format and include device address (allows distinguishingmultiple devices
connected to chained hubs)

• Accept device serial number as device name and report it via extcap to Wireshark
• Add quoting/escaping and named arguments to command parser
• Perform more parameter validation in command/option parser
• Unify PHY/port names to A/B/AB/none (a mix of conventions was used before)

7

1 Introduction

1.5.7 Host tool v1.1 (686fe4f)

• Add ”speed” convenience command
• Improve capture stats log behavior
• Note that this used to be untagged in the public git repository

1.5.8 Host tool v1 (f5eed9c)

• Initial release
• Note that this used to be untagged in the public git repository

8

2 Hardware Setup

2 Hardware Setup

The ethernet debugger needs to be powered via USB to forward any packets. Without power, communica-
tion between the two ports is blocked. Make sure USB cable and host port are at least USB 3.0 compliant.
If you use USB hubs or USB isolators, make sure they all support USB 3.0. USB 2.0 will work, but will
provide degraded functionality, as USB 2.0 bandwidth is lower than that of Gigabit Ethernet.

Attach the ethernet cables to the ports. Make sure you are breathing regularly. As soon as both port LEDs
indicate a connection, and the negotiated ethernet speed matches between both ports, communication
is possible.

2.1 LEDMeaning

2.1.1 Port LEDs

The LED in use indicates the ethernet speed mode. If packets are sent or received, the corresponding
LEDs will blink.

Speed LED L LED R

1000 MBit off on
100 MBit on on
10 MBit on off
no link off off

Note that it’s possible for one port to have a link, while the other port does not. They also can have
mismatched speed. In both cases, capture will not work.

2.1.2 Main LED

Normally, the main LED should be blue. It will blink if capturing is in progress. The following states
exist:

LED state Meaning

Blue USB super speed connection is up
Green USB high speed connection is up (slow, but functional)
Cyan USB power only (will not work)
Blue blinking capturing at USB super speed is in progress
Green blinking capturing at USB high speed is in progress (will drop packets)
Blue/green blinking the blink_led command is being used (only for a short moment)
Red initial bootloader failed (probably flash problem)
Red blinking bootloader failed (probably flash problem)
Off low level bootloader/firmware crash, or no USB power
Red/yellow blinking fatal higher level firmware error
Red/blue or Red/green blinking firmware update failed; running factory firmware version

(The blue/green color indicates USB speed, see above.)

When you experience problems, it is useful to describe the LED state exactly in support requests, even if
the observed variant is not listed above.

9

3 Software Installation

3 Software Installation

The software consists of a host tool, called ”nose”. It performs the following roles:

• userspace driver for the device
• Wireshark integration via Wireshark extcap
• command line tool for explicit access

3.1 Linux

No binaries or packages are provided. You can build it from the public git repository. Binary builds or
packages for popular Linux distributions may be provided if there is enough demand.

• build the host tool from the git repository (see https://github.com/intona/ethernet-debugger#build-
instructions)

• create a symlink for Wireshark extcap (see Wireshark section for details)

You may need to install an udev rule to get access to the USB device as normal user:

sudo cp udev.rules /etc/udev/rules.d/50-intona-ethernet-debugger.rules
sudo udevadm trigger

3.2 macOS

Nobinaries are provided. Hence the software is provided as source code, you can automatically download
and build it using Homebrew.

brew install --HEAD intona/ethernet-debugger/nose

Homebrew is a 3rd party project for installing freely available software on macOS. See https://brew.sh/
for details and how to install Homebrew itself.

You need to setup Wireshark extcap manually. See below.

We decided to not provide binaries for macOS because it is quite impossible to deliver unified, stable
executables that will work on various releases of both softwareAPI andCPU types. Think of the platform
change to ARM. This is no issue when compiling from sources using Homebrew.

3.3 Windows

Windows 10 or later 64 bit is required (but see Windows 7 section below). An installer is provided on the
download page3.

• make sure that Wireshark is installed before you proceed
• double-click the installer
• press next a lot of times

It does not matter whether the device is connected during installation. In fact, the installer does not try
to access the device at all.

You can reinstall any time. Updating Wireshark might remove the Ethernet Debugger Wireshark inte-
gration. Reinstalling the Ethernet Debugger will restore it.

3https://intona.eu/en/products/ethernet-debugger#downloads

10

https://github.com/intona/ethernet-debugger#build-instructions
https://github.com/intona/ethernet-debugger#build-instructions
https://brew.sh/
https://intona.eu/en/products/ethernet-debugger#downloads

3 Software Installation

3.4 Windows 7

The device can be used with Windows 7. There are the following issues on Windows 7:

1. Separate installation of a dummy device driver using Zadig4 is required. (See below.)
2. Most Windows 7 installations are 32 bit only. The normal installer is 64 bit only, and will not run.
A 32 bit build of the installer is provided separately on the download page.

3. The host tool can not use as much memory for capture buffers, or may run out of memory. There
is no solution for this, but as long as enough physical RAM is available, the default settings should
not trigger an out of memory situation.

4. Wireshark may stop working on Windows 75 in the future. In fact, they offer no 32 bit builds for
the latest Wireshark stable release.

5. There may be compatibility issues in the host tool, that are not present onWindows 10. There may
be compatibility issues with olderWireshark versions, which you will be forced to use onWindows
7.

As noted above, you need to install a device driver with a 3rd party tool, or the host tool won’t be able
to access the device. This is not necessary on Windows 10, because we use libusb, and our device uses
a feature, that essentially tells Windows 10 that it’s a libusb-based device. (A technical explanation can
be found here6.) On Windows 7, a dummy device driver is required, which contains no executable code,
and merely tells Windows that it needs to use the Microsoft WinUSB driver (used by libusb) with the
Ethernet Debugger. Since signing and installing a device driver is a lot of work, the host tool installer
has no support for this. Fortunately, a simple 3rd party tool called Zadig exists: https://zadig.akeo.ie/
This tool can generate and install a dummy driver for any libusb-based devices. Follow the instructions
on its website, select the Ethernet Debugger device entry, and install a driver. Then capture should work.

4https://zadig.akeo.ie/
5https://www.wireshark.org/faq.html#_does_wireshark_work_on_older_versions_of_windows_such_as_windows_7
6https://github.com/pbatard/libwdi/wiki/WCID-Devices

11

https://zadig.akeo.ie/
https://zadig.akeo.ie/
https://www.wireshark.org/faq.html#_does_wireshark_work_on_older_versions_of_windows_such_as_windows_7
https://github.com/pbatard/libwdi/wiki/WCID-Devices

3 Software Installation

3.5 Verifying Device Access

A simple way to verify whether the software works is by simply running the host tool. It is a command
line program. On Windows, double-clicking nose.exe will open a terminal window, while on Unix, you
need to open a terminal window manually, and then run nose in it.

If the installation succeeded, and the device is connected, you should see the following:

Device 2:3:7 opened.
PHY A: link=down speed=0MBit
PHY B: link=down speed=0MBit
Warning: no link.

The example above has the device on USB bus 2, port 3, device address 7.

If the device could not be found or accessed, the following is shown:

No devices found.

You can stop the host tool by closing the terminal or by entering the ”exit” command.

3.6 Wireshark extcap Setup

Wireshark is the recommended way to use the Ethernet Debugger. It is 3rd party software and not devel-
oped by Intona. Download and install it from Wireshark’s website: https://www.wireshark.org/downlo
ad.html

Normally, the Windows installation procedure installs our host tool as a Wireshark ”extcap”. In short,
”extcap” allows external programs (such as our host tool) to provide a capturing source. See theWireshark
extcap section for details. If the host tool is not correctly installed as extcap source, you will not be able
to start capture from the Wireshark GUI (but other methods of capturing will still work.)

The host tool supports extcap directly via special command line parameters. It must be located in the
”extcap” sub directory within the Wireshark installation directory or the user’s Wireshark configuration
directory. The paths depend on the operating system and the Wireshark installation location.

You can confirm whether it’s installed correctly by opening the Wireshark about dialog, and switching
to the ”Plugins” tab. There should be an entry named ”nose”.

Old Wireshark versions
The non-global/user-specific extcap paths below require at least Wireshark 3.1.1. Older
releases support global paths only.

3.6.1 Linux, macOS

It is recommended to create a symlink to the host tool. The global path is something like
/usr/lib/wireshark/extcap/ or /usr/lib/x86_64-linux-gnu/wireshark/extcap/. The exact path depends
on the Linux distro. The user-specific path is usually ~/.config/wireshark/extcap/.

The following should install it locally, assuming ”nose” is already installed:

mkdir -p ~/.config/wireshark/extcap/
ln -s `which nose` ~/.config/wireshark/extcap/nose

12

https://www.wireshark.org/download.html
https://www.wireshark.org/download.html

3 Software Installation

3.6.2 macOS (app bundle)

The following is useful if youwant to install the extcap globally, or on olderWireshark versions, assuming
”nose” is already installed via Homebrew:

ln -s `which nose` /Applications/Wireshark.app/Contents/MacOS/extcap/nose

The /Applications/Wireshark/ part of the path can be different, depending on where exactly Wireshark
is installed. Check the Wireshark about dialog (”Folders” tab) if you are unsure.

You need to start Wireshark at least once before you run the above command. Otherwise,
macOS may show a security warning, and it won’t work.

3.6.3 Windows

Since Windows does not support symlinks properly, it is recommended to create a .bat file in the Wire-
shark extcap sub-directory. The installer creates a file named intona-ethernet-debugger.bat with the
following contents (assuming default paths and English locale):

"C:\Program Files\Intona\Ethernet Debugger\nose.exe" "%*"

This ”redirects” all invocations to the actual installation location.

The user-specific path is C:\Users\USERNAME\AppData\Roaming\Wireshark\extcap\. Replace USERNAME
with the actual username. You may need to create the last component of the path. The installer does
not try to use this.

Updating Wireshark tends to remove and recreate the Wireshark installation directory.
This will also remove the intona-ethernet-debugger.bat file created by the Ethernet De-
bugger installer. You could run the installer again to fix this. Manually moving the .bat to
the Wireshark user-specific configuration path mentioned above avoids this.

3.7 Firmware Update

Firmware updates may be required to get new features and to apply bug fixes. Normally they are not
necessary. Applying such an update must be done explicitly. The update process rewrites the device’s
flash memory, and should not be interrupted. Make sure the device is connected via USB 3.0, as the
update will take a long time with USB 2.x. Firmware downloads are available here7.

3.7.1 Unix-like

Plug in the device, and ensure it’s using USB 3.0 (main LED is blue). Then run the following command
on the terminal:

nose --firmware-update Downloads/firmware.dat

Where Downloads/firmware.dat is the path to the firmware binary you downloaded.

If the firmware file is accepted, and the device is accessible, something like this will appear:
7https://www.intona.eu/products/ethernet-debugger#downloads

13

https://www.intona.eu/products/ethernet-debugger#downloads

3 Software Installation

Firmware file: version 1.08
Select firmware update action:

Choice Address Serial Firmware version

4 2:7:12 08900037 1.06

a Update all devices with outdated firmware
b Force update all devices (dangerous)
c Do nothing and exit

Enter your choice:

If you type 4 followed by the enter key, the device 08900037 will be updated. The tool will exit when the
update is finished or aborted. On success, the device restarts on its own, and runs the new firmware
immediately.

If update fails, the device will boot from a fallback factory image, and indicate the failure by flashing the
main LED red. You should retry the update, or if the tool fails again, contact support. If update is slow
and takes longer than at most 1 minute, make sure the device is connected via USB 3 instead of USB 2.

You can confirm successful update by comparing the device version number (bcdDevice or checking the
output of the hw_info command) with the version indicated by the update.

If the --device option is provided, the tool will update the given device without asking for confirmation.
--firmware-update-all will update all detected devices without asking for confirmation. In both cases
(at least with v1.2) the firmware is written only if it’s newer than the firmware on the device, unless
--firmware-update-force is provided.

Old host tool versions (before release v1.2) do not ask for a choice, but start the update with
the first device found without confirmation. It is recommended to download and install
the newest host tool before performing a firmware update.

3.7.2 Windows

The same instructions as withUnix apply. You can double-click ”firmware-update.bat” in Explorer in the
Ethernet Debugger installation folder to avoid constructing a command line. This will use the firmware
file that came with the installer (it’s in the same folder). The latest installer usually comes with the latest
release of the firmware. Installers for host tool v1.0 (build 53) do not have this yet; download a newer
version here8.

(The host tool never ”phones home”, and there is no automatic update over internet.)

8https://intona.eu/en/products/ethernet-debugger#downloads

14

https://intona.eu/en/products/ethernet-debugger#downloads

4 Capturing

4 Capturing

The main purpose of the ethernet debugger is to capture packets. The following methods are available.

4.1 Wireshark extcap

If you openWireshark, it should display any plugged in Intona Ethernet Debuggers as Ethernet Debugger
USB (08900037) in the list of capture interfaces. The 08900037 in the brackets is the serial number (as in
the USB device descriptor). (Some versions of Wireshark also show the device address in the format used
by the host tool.) Double click this entry, andWireshark should start capturing. The Ethernet Debugger’s
main LED will start blinking.

There is no hotplug mechanism for Wireshark extcaps. If you connect or disconnect de-
vices while Wireshark is running, you may need to press F5 or restart Wireshark to update
the device list of Ethernet Debugger capture devices.

Note that if the bandwidth utilization is high, the internal FIFO may overrun, leading to lost packets.
The host tool adds a packet comment to the first packet after a run of dropped packets.

It may also happen that Wireshark freezes if the amount of data is too large, because the GUI requires
a large amount of resources to deal with packet input. (Capturing to disk via the ”nose” tool may help
reducing packet drop. You can open the capture file with Wireshark afterwards.)

Various error conditions may deadlock Wireshark and the host tool on capture start.

4.1.1 Capturing Options

Wireshark lets you set some Ethernet Debugger specific options before starting capture. Click on the
gear-like symbol left of the Ethernet Debugger interface in Wireshark’s Capture interface list.

4.1.2 Wireshark extcap Toolbar

The host tool provides a toolbar in Wireshark. This is implemented through the extcap mechanism. It is
slightly clunky due to Wireshark restrictions (all GUI code is provided by Wireshark, and not everything
can be realized). The toolbar can be shown by enabling it in the Wireshark ”View” menu, ”Interface
Toolbars” sub-menu.

4.2 Directly Starting Wireshark from Host Tool

You may use the --wireshark option of the host tool to start Wireshark and capturing in one go. It
attempts to find the installation path of Wireshark, sets up a named FIFO, and starts a new Wireshark
process.

Example

nose --wireshark

Lifetime of Wireshark process on Unix
Since host tool version v1.2,Wireshark is not terminated anymore if capturing ends or nose
is exited. Older versions always terminated it due to being in the same process session.

15

4 Capturing

4.3 Statistics

The host tool --capture-stats option can be used to enable regular statistic updates on the terminal.
The ”set capture-stats true” command can be used to do this at runtime. (You can enter this command
on the Wireshark extcap toolbar, for example.)

4.4 Capturing to a File

The host tool --fifo option can be used to capture either to a real file on disk, or a named FIFO. The
capture_start command is similar, and can be used to start capturing via the host tool command line or
IPC interface. The format of the output is PcapNG (see https://pcapng.com). You may use the third party
open source libpcap library to parse such files. If you use an actual FIFO, you can stream in real time.

Note that if you capture to disk, overruns can happen due to waiting on disk I/O. The host tool tries to
avoid this by using decoupled memory buffers, but these may be slowly filled up, until a software overrun
happens.

Example

Capturing to a file until Ctrl+C is hit, and log capture statistics to stdout.
nose --capture-stats --fifo target_file.pcapng

Manually starting Wireshark.
On terminal 1:
mkfifo /tmp/fifo
nose --fifo /tmp/fifo
On terminal 2:
wireshark -k -i /tmp/fifo

4.5 Selecting the Device

If you have multiple Ethernet Debuggers, the --device option can be used to pick a specific device. Pass-
ing the special value help to this option lists all devices that were found.

Multi-Capture
Selecting multiple devices at once is not possible. However, if extcap is correctly installed,
you can select multiple capture devices in Wireshark. This will provide a merged view of
data coming from multiple devices and host tool instances.

4.6 Configuring the Buffer Size

The --capture-soft-buffer and --capture-usb-buffer can be used to fine-tune the sizes of the fixed
size buffers allocated on the host. Raising them may reduce buffer overruns on the host PC.

16

https://pcapng.com

5 Other Features

5 Other Features

5.1 PoE Passthrough

Both ethernet ports are capable of handling Power over Ethernet (PoE) as specified in IEEE
802.3af, 802.3at and 802.3bt. Power is passed through in both directions without interception.

5.2 PTP Timestamps

The device provides high resolution timestamps for packets. This can help to debug PTP related issues,
or any other timing issues. These timestamps are in nanoseconds with 10 ns resolution.

Each PHY has its own FIFO, whichmay affect accuracy. In addition, device-internal CDCmay affect the
accuracy. Internally, the timestamps are generated by a 100 MHz clock and are passed to the ethernet
PHY’s (RGMII) clock domain, which introduces jitter. The timestamps are relative to device start.

The host tool capture output adds a start offset to the timestamps to make them roughly line up with wall
clock times. However, this offset is not precise, and there is no time correction. The absolute time of a
packet event might be slightly different from real time. The longer the capture is running, the higher the
deviation will be.

IN3083WP has additional information.

5.3 Supported Command Line Options

You can list supported options as follows:

nose --help

Current list of options:

Name Description

--verbosity 0|1|2 Set verbosity log level: 0 silent, 1 normal/default, 2 verbose messages
--version Print host software version and exit
--selftest Run internal self-test. (Requires a loop between the two ports.)
--selftest-serial Internal.
--wireshark Start wireshark and dump packets to it. Terminate once done.
--device name Open this device. (Pass ”help” to get a list. ”none” prevents

automatic opening of a device.)
--firmware-update file Perform a firmware update using this file.
--firmware-update-all Update firmware of all devices that have been found. (Since v1.2.)
--firmware-update-force Update firmware even for devices which have the current or newer

firmware version. (Since v1.2.)
--fifo file Start capture and write to the given file or fifo. (Overwrites the

target if it’s a file.)
--ipc-connect path Connect IPC to this socket/named pipe. Terminate on disconnect.
--ipc-server name Host IPC on this socket/named pipe.
--capture-soft-buffer num Capture soft buffer (in bytes, accepts kib/mib/gib suffix)
--capture-usb-buffer num Capture libusb buffer (in bytes, accepts kib/mib/gib suffix)
--capture-stats Show capture statistics every 1 seconds.
--extcap-* Various options for use by the Wireshark extcap mechanism.
--capture Used by Wireshark; ignored by host tool.

17

5 Other Features

Name Description

--strip-frames Strip preamble, SFD, and FCS from ethernet frames. (Changes
pcapng output to LINKTYPE_ETHERNET.)

--cmd commands Run commands on opening. (Must be a single string, separate
commands with ;) (Since v1.3.)

--run commands Run commands after opening. (Syntax like --cmd.) (Since v1.3.)
--exit-on Control when exactly the tool should exit automatically. (Since v1.3.)
--exit-timeout Always exit after the given time of seconds has expired. (Since v1.3.)
--capture-speed-test Test how much USB bandwidth capture needs (discards capture

data). (Since v1.5.)

5.4 Interactive Command Line

The host tool has an interactive command line interface. When starting the host tool without commands,
it will wait for commands from the terminal. You can use the ”help” command to list available commands
and their parameters. Many advanced features (such as listed below) are accessible only through this
interface.

By default, the host tool will read from stdin and accept commands. It will terminate if stdin is closed
or returns EOF. If run on the terminal, it offers an interactive command line using libreadline. (If the
host tool was built without libreadline, or you can use the rlwrap9 3rd party tool to get comfortable line
editing and history:

rlwrap nose <arguments for nose>

5.5 Scripting

The host tool can be used for scripting. The --run and --exit-on options (available since host tool v1.3)
can be used to run individual host tool commands.

Example

nose --run 'inject A --file mypacket.dat' --exit-on always

(The --exit-on is needed to make the tool exit after running the command.)

For more complicated use cases, the IPC interface offers and out-of-process API. (See IPC Interface
section.)

5.6 Supported Commands

Name Description

blink_led Flash main LED
block_ports Block or unblock all packets
capture_start Start capturing to a file or FIFO
capture_stop Stop current capture
cfg_packet Send internal command to device

9https://github.com/hanslub42/rlwrap

18

https://github.com/hanslub42/rlwrap

5 Other Features

Name Description

device_close Close the current device
device_list List all Ethernet Debuggers connected to this PC
device_open Open a device
disrupt Setup packet disruption and port blocking
disrupt_stop Disable packet disruption and port blocking
exit Exit the host tool
help Show all commands
hw_info Show device information (including firmware version etc.)
inject Setup packet injector
inject_stop Disable packet injector
mdio_read Read a PHY’s MDIO register
mdio_write Write a PHY’s MDIO register
reset_device_settings Restore default settings on the currently opened Ethernet Debugger
set Set a command line parameter
set_device_phy_wait Configure PHY speed negotiation delay time
speed Configure PHY speed negotiation mode
latency_tester_sender Setup device as latency tester sender (Since v1.3)
latency_tester_receiver Setup device as latency tester receiver (Since v1.3)

Some commands are described in further detail in the following sections. The help command lists pa-
rameters accepted by each command.

5.7 IPC Interface

The command line interface is available via IPC (unix domain sockets on UNIX, named pipes on Win-
dows). This may be useful for scripting or creating GUI frontends. For example, you could inject or drop
packets under specific situations, or start/stop capturing at specific times

The IPC server created with --ipc-server is available as long as the host tool runs. The path, at which
the IPC communication channel is available, depends on the OS. (The tool prints the full path when it
starts the server.)

The --ipc-connect option makes the host tool initiate the IPC connection to the given path. This con-
nection behaves the same as a connection made to a server started with --ipc-server. This mode may
be more convenient with certain frameworks, for example when the framework makes it easy to start a
server.

5.7.1 Windows

The IPC communication channel is a local win32 named pipe (CreateNamedPipeA()). For example, ”nose
--ipc-server foo” will create the named pipe \\.\pipe\foo, which can be accessed by other programs in
read/write mode. (Starting with host tool v1.3 you can simply pass a full path.) For testing, a third party
program such as PuTTY can be used (enter the full named pipe path as a serial device; unfortunately,
configuring the terminal to act decently is hard: by default there is no local echo, and CTRL+j must be
used to send the required \n ASCII 10 line terminator).

With --ipc-connect, the argument is a full path, which will be passed to CreateFileA(). In theory it can
be anything, as long as access with FILE_FLAG_OVERLAPPED works.

19

5 Other Features

5.7.2 UNIX (Linux/Mac)

The IPC communication channel is a Unix domain socket located on /tmp. For example, ”nose --ipc-
server foo” will create the socket /tmp/too.socket. (If the filesystem entry already exists, it will be
deleted, even if it’s a normal file.) Since host tool v1.3, the argument can be a full path too (if / or \
appears in the argument, it’s considered a full path). For testing, the third party program so cat can be
used to interactively send commands:

socat /tmp/foo.socket -

--ipc-connect takes a full path. Both sockets are supported (connect() is used) and other types of files
(open() is used).

5.7.3 Protocol

You can send commands in text or JSON form (the help command lists available commands and shows
the basic syntax). The protocol uses 1 JSON object per line (in both directions of communication). A line
is terminated with \n (ASCII line feed, byte 10). It is fairly self-describing:

IPC example

{"command":"mdio_read", "phy":1,"address":1,"id":1} // client to host tool
{"id":1,"result":31049,"success":true} // host tool to client

The id field is an arbitrary integer chosen by the client, and can be used to associate requests with replies.
The C-style comments are for illustration, and not part of the protocol.

For example, on the shell and with socat, you could do the above by:

Terminal 1

$ nose --ipc-server test

Terminal 2

$ echo '{"command":"mdio_read","phy":1,"address":1,"id":1}' \
| socat - /tmp/test.socket > /tmp/output.txt

$ cat /tmp/output.txt
{"id":1,"result":31081,"success":true}

A proper client can send multiple commands to the same connection. Replies are always sent imme-
diately, though certain conditions like USB communication failing will block replies until a timeout.
Replies are always sent back in order (it cannot happen that the reply for the first request comes after
the reply for the second request). Events (such as log messages) can appear at any time, even between
request/reply messages.

Log messages (such as output when PHY links change their state) are wrapped into special JSON mes-
sages:

20

5 Other Features

Log message example

{"type":"log","msg":"PHY 1: link=up speed=1000MBit\n"}

5.8 Identify Function

The blink_led command will flash the device main LED blue/green for a moment. This is helpful to
determine which device is opened on a host tool instance if multiple Ethernet Debuggers are connected
to a PC.

5.9 Latency Tester

5.9.1 Introduction

This feature (available since host tool v1.3) involves sending generated ethernet packets from one Eth-
ernet Debugger to a second one, and measuring the delay. This can be used to test the latency if a 3rd
device, using a setup like this:

Ethernet Debugger 1 is the sender, Ethernet Debugger 2 is the receiver. The sender generates packets
that get sent out of port A and B at the same time. DUT is expected to propagate the packet unchanged
to the receiver. The receiver measures the difference in arrival time between port A and B.

The Latency Tester feature takes care of generating/sending the packets and analyzing them on the re-
ceiver side. It writes the computed delay time to a text file. The packets use a (hopefully) unused Ether-
Type (0xBEEF). The feature as currently implemented can test at most Layer 2 devices (like ethernet
switches). Testing devices that operate on a higher layer (such as IP routers) are not supported, as that
would require implementing parts of ARP and IP (though it’s theoretically possible).

5.9.2 Instructions

Connect the devices as in the diagram above. On the PC, open two ”nose” instances, one for the sender,
one for the receiver. Use the device_list command to confirm whether the correct device is opened
(change it with the device_open command). Then run the latency_tester_sender command on the sender
instance, and latency_tester_receiver on the receiver instance. By default the sender starts sending con-
tinuously with 1 packet per 1 ms, with a test sequence that lasts 10 seconds. The receiver ignores the
packets until a start packet is detected, and then logs the status every 10 packets (it logs the delay for only
the 10th packet, use file output to retrieve all data points).

21

5 Other Features

Sender setup

Device serial1 / 4:2:15 opened.
PHY A: link=up speed=1000MBit (master)
PHY B: link=up speed=1000MBit (master)
> device_list
Devices:
- 'serial1' (4:2:15) [opened]
- 'serial2' (4:2:16)

Found 2 devices.
> device_open serial2
USB device closed.
Device serial2 / 4:2:16 opened.
Opening succeeded.
PHY A: link=up speed=1000MBit (slave)
PHY B: link=up speed=1000MBit (master)
> latency_tester_sender
Latency tester: new test run (0)
Latency tester: new test run (1)
Latency tester: new test run (2)

If continuous sending is not desired, you can also just run ”latency_tester_sender --once”.

Receiver setup

Device serial1 / 4:2:15 opened.
PHY A: link=up speed=1000MBit (master)
PHY B: link=up speed=1000MBit (master)
> latency_tester_receiver
Starting capture thread succeeded.
Receiver setup. Listening to incoming packets.
Starting recording sequence...
seq=99 diff=-410
seq=199 diff=-410
seq=299 diff=-410

The output gives you an idea whether it actually works. Actual data should be retrieved by using file
output. File output can be used with for example:

Receiver file output

> latency_tester_receiver --out-file mydata.txt

You may want to use an absolute path here (perhaps using drag & drop from a file manager to get the
path) if the concept of working directories is too uncomfortable.

The file is opened when a sequence starts, and closed when it ends. If the file already exists when a
sequence starts, the file is not overwritten. Instead, the sequence is skipped repeatedly until the file is
deleted or moved by the user. Example:

22

5 Other Features

Terminal Output of Latency Tester Example Run

> latency_tester_receiver --out-file mydata.txt
Starting capture thread succeeded.
Receiver setup. Listening to incoming packets.
File 'mydata.txt' exists, skipping sequence.
File 'mydata.txt' exists, skipping sequence.
Opened file 'mydata.txt' for writing.
Starting recording sequence...
seq=99 diff=410
seq=199 diff=410
seq=299 diff=410
seq=399 diff=410
seq=499 diff=410
seq=599 diff=410
...
seq=9899 diff=420
seq=9999 diff=410
Recording sequence finished.
Problems detected: no
File 'mydata.txt' closed.
File 'mydata.txt' exists, skipping sequence.
File 'mydata.txt' exists, skipping sequence.

The file mydata.txt was deleted shortly after the receiver was started. The file was then created again
and opened for writing. The host program picked up the next sequence of test packets and wrote them
to mydata.txt. The sequences after that are skipped because mydata.txt still exists. (It will log two skip
messages per sequence, because it encounters a first packet from both paths.) The idea behind this
behavior is that tests can be repeated without much interaction, simply by renaming the output file
(maybe giving it a more descriptive name), without the danger of accidentally overwriting files.

The output file simply contains the differences in receive timestamps in nanoseconds, with 10 ns resolu-
tion:

23

5 Other Features

Example Output File (Partial)

420
430
410
410
420
410
420
430
410
420
420
420
420
420
420
420

These differences should be roughly equivalent to the latency the DUT incurs on ethernet. The values
are positive if the latency values on port A are higher than on port b.

See the ”PTP Timestamps” section for details on the quality of the timestamps.

By default, 10000 samples are sent (depending on sender configuration), and the receiver reports ”Prob-
lems detected: no” only if all samples were included. If you see errors logged on the terminal, there is
probably some sort of problem due to packet drop or corruption.

5.10 Packet Injection

It is possible tomanually inject new packets into the ethernet connection. As no actual network interface
is provided, OS mechanisms (such as sockets) cannot be used. Using the host tool is required.

The inject command provides this functionality. It is possible to send arbitrary ethernet packets, includ-
ing packets that are not spec-compliant. This is not a high speed send path – full ethernet bandwidth
cannot be reached. (Although you can instruct the command to repeat packets, in which case it will
produce a high bandwidth stream of the same packet being repeated.)

Use inject_stop to disable the injector again. Use hw_info to check whether it’s currently enabled.

CRC errors can be injected. Degenerate packets (too short, IPG too low) can be created with the ”raw”
parameter. Low level physical layer coding errors can be generatedwith the ”gen-error” parameter (PHY
emits symbol error for a specific byte). The IPG can be controlled with the ”gap” parameter, which will
set the distance to other generated packets as well as packets that are normally transferred through the
wire.

Since host tool v1.3, packet data can be read from files with ”--file filename”.

Since host tool v1.5, the ”--bw-packets” and ”--bw-bytes” parameters can be used to repeat the packets
at a specific bandwidth. --bw-bytes accepts ”kib” or ”mib” asd suffix for convenience. Using either of
the parameters overwrite the ”gap” parameter with a value needed to reach the specified bandwidth, and
”num” is set to inf. If the ”num” parameter passed by the user is not 1 (the default) or inf, or ”loop-count”
is used, the parameters are silently ignored. If the requested bandwidth cannot be achieved in theory, the

24

5 Other Features

command fails. If there is other communication on the ethernet line, the actual bandwidth may be differ-
ent. If the ethernet speed mode changes, the command has to be run again to set the correct parameters.
The bandwidth is computed using the full physical layer packet, and includes preamble/SFD/padding/FCS
in the byte count.

Use ”help inject” to list all parameters.

Using the command may drop packets coming from the opposite source port. The injection logic will
wait until transmission is turned off, then it will inject the packet, and fully drop any other packets from
the opposite port.

Example

Inject a packet that starts with a AB:CD:12:34:56 dest. MAC,
the rest of the packet filled with 0s, on port A (into the
stream of traffic flowing from B to A):
inject A ABCD123456

5.10.1 Command parameters

Name
Possible
values Description

phy ”A”, ”B”,
”AB”

Port to affect.

data Hex string,
like
”ABCD12”

Packet payload data to append (interpreted as hex string, converted to
bytes). E.g. ”ABCD” is converted to the 2 byte sequence 0xAB, 0xCD.
(Default: empty)

raw ”true”,
”false”

If true, do not add preamble/SFD/CRC to the user provided payload
data. (Default: false)

num Integer or
”inf”

Repeat mode: how many packets to inject until operation stops.
(Default: 1)

gap Integer Minimum interpacket gap before/after the injected packet in bytes.
(Default: 12)

append-
random

Integer Append this many random bytes to the payload. The random bytes the
same for every injected packet if repeat mode is used. (Default: 0)

append-
zero

Integer Append this many zero bytes to the payload. (Default: 0)

gen-error Integer Offset of byte for which the PHY should generate a symbol error. The
offset is into the final, physical layer ethernet packet. A value of -1
disables this. (Default: -1)

file String, path
to a file

If not empty, this string is opened as a file, and its contents are used as
packet payload data. The ”file” or the ”data” parameters cannot be used
at the same time (one of the parameters have to be set to empty or not
provided). Unlike the ”data” parameter, the file data is not interpreted
as a hex string. (Default: empty)

loop-
count

Integer Repeat the payload this often after the end of the packet. Obscure
feature to test over-large packets. (Default: 0)

loop-
offset

Integer For use with ”loop-count”. Byte offset into the packet after which data
should be repeated. (Default: 0)

25

5 Other Features

Name
Possible
values Description

nopad ”true”,
”false”

If true, do not pad short packets to mandatory packet length. (Default:
false)

bw-bytes Integer, or
byte
amount
(”1kib”,
”1mib”)

Rate of raw bytes per packet. If not 0, this command overwrites the
”gap” parameter to reach the requested rate. Packet repeat (”num”
parameter) is set to ”inf”. (Default: 0)

bw-
packets

Integer Similar to ”bw-bytes”, but the parameter specifies the number of
packets per second to reach. Ignored if ”bw-bytes” is set. (Default: 0)

The help inject output has some details on allowed value ranges.

5.11 Blocking Ports

The block_ports command blocks all traffic through the device in a specific direction:

Command Effect

block_ports A Block traffic from B→A, unblock A→B
block_ports B Block traffic from A→B, unblock B→A
block_ports AB Block all traffic
block_ports none Unblock all traffic

This command uses the same hardware logic as the disrupt command (basically it’s just a simpler version
of the same command). Using either resets the state set by the other command.

5.12 Packet Disruption

The disrupt command can be used to drop or to destroy some or all packets in a certain direction. This
is a form of error injection suited for testing reliability of low level protocols. It can either flip a single
bit in a packet at a user-chosen byte offset, or discard entire packets.

(Restriction: cannot drop specific packet according to filter-like matching criteria etc.)

Use disrupt_stop to disable disruption again. Use hw_info to check whether it’s currently enabled.

Example

Disrupt a number of packets for a short time:
B on port B (traffic flowing from A to B)
--mode drop just drop the packets (instead of creating CRC errors)
--num 20 drop 20 packets in total
--skip 10 drop only every 10th packet (this makes it active for ~200 packets)
disrupt B --mode drop --num 20 --skip 10

(The syntax changed in host tool v1.2.)

26

5 Other Features

5.12.1 Command parameters

Name Possible values Description

phy ”A”, ”B”, ”AB” Port to affect.
mode ”drop”,

”corrupt”, ”err”
Operation mode. (Default: ”drop”)

• ”drop”: drop packet completely
• ”corrupt”: flip a single bit in the packet (see ”offset” parameter; the
bit cannot be selected, and is chosen by a pseudo random number
generator on each packet)

• ”err”: turn a packet byte into a symbol error (see ”offset” parameter)

num Integer or ”inf” Repeat mode: how many packets to disrupt until operation stops. (Default:
1 - disrupt only one packet)

skip Integer In repeat mode, do not disrupt this number of packets before disrupting
another packet. The skipped packets do not count towards the total
number of packets to disrupt as set by the ”num” parameter. (Default: 0)

offset Integer Byte to affect with the ”corrupt” or ”err” operations. The offset is into the
final, physical layer ethernet packet. (For example, 0 would disrupt the
first byte of the preamble.) Ignored in ”drop” mode. (Default: 20 - this is
the ethertype field)

The help disrupt output has some details on allowed value ranges.

5.13 MDIO Access

5.13.1 Raw MDIO access

The mdio_read and mdio_write commands provide direct access to the PHY’s MDIO registers. Access
to register 22 is intercepted/emulated by the firmware.

5.13.2 Changing PHY Ethernet Speed

Ethernet speed is controlled by the PHYs. By default, they are set to use a common speed, and the
firmware automatically adjusts the PHYs to use the slowest negotiated speed of either PHY (devices
with firmware 1.00 do not support this behavior - you need to set the speed manually).

You can use the speed command to force specific speed modes on both PHYs:

Speed Command

1000 MBit (full duplex) speed 1000
100 MBit (full duplex) speed 100
10 MBit (full duplex) speed 10
1000 MBit (half duplex) speed 1000half
100 MBit (half duplex) speed 100half
10 MBit (half duplex) speed 10half
Highest common speed mode of both PHY speed same
Manual control speed manual

27

6 Known Problems

The same mode puts the PHYs into auto negotiation mode at first, and if the speed modes mismatch,
the faster PHY is forced into a lower speed mode. If a link goes down and up again, the process is
repeated. Technically, the process can re-establish the link multiple times, which makes it slower and
may be annoying when troubleshooting connected devices. The set_device_phy_wait command can be
used to set the fixed time after which the state machine assumes the PHY cannot establish a link.

The manual mode lets each PHY negotiate the speed independently, which will lead to problems if the
device’s port A and B PHYs do not negotiate the same speed. This mode is useful only if you want
to manipulate the MDIO registers directly, or maybe for checking what each link ends up with auto
negotiation.

The values set by the ”speed” and the ”set_device_phy_wait” commands are stored as per-
manent settings on the device.

Older host tool versions do not have the ”same” mode implemented, and require the user
to manually correct speed modes. Even older versions do not even offer the ”speed” com-
mand, and require using manual mdio_write commands. In addition, the ”same” mode
requires at least version 1.06 firmware. In addition, the half duplex modes are available
only since version 1.08 firmware. Older versions will always use full duplex, and disable
auto negotiation, which tends to make connected PHYs go into half-duplex mode.

5.14 Device Settings

Since firmware 1.06, the device persistently stores some settings on its EEPROM. You can inspect
these settings with the ”hw_info ” command. You can clear all persistently stored settings with
the ”reset_device_settings” command. Power cycle the device after running the latter command
successfully in order to clear any runtime state (PHY registers, inject/disrupt features).

6 Known Problems

• If no ethernet is connected, or there are no packets on thewire at all, the host toolmay not terminate
properly, even ifWireshark is terminated. This happens because the host tool will neverwrite to the
pipe toWireshark. The host tool will continue to run in the background, andwill block access to the
device. In this case, the LEDwill continue blinking, and youmay have to kill the host tool manually.
This problem should not occur with host tool v1.2, which has a workaround that terminates it after
a one second timeout.

• If extcap is used, and start of capture fails (such as inaccessible device), Wireshark does not termi-
nate gracefully. This seems to be a Wireshark issue.

• If extcap is used, and capturing errors (such as unplugging the Ethernet Debugger device), Wire-
shark does sometimes not notice that capturing terminated.

• If extcap is used, Wireshark sometimes gets into a mode in which the Wireshark GUI seems to
indicate that capturing started correctly, but the host tool is blocked trying to open Wireshark’s
extcap control pipes. Restarting Wireshark helps (you may need to kill the blocked ”nose” process
as well).

• Firmware versions before 1.08 had issues with 10/100 MBit modes.

If you encounter problems, always update to the latest firmware version and host tool, available here10.
10https://intona.eu/en/products/ethernet-debugger#downloads

28

https://intona.eu/en/products/ethernet-debugger#downloads

7 Further Readings

7 Further Readings

7.1 White Papers

7.1.1 Ethernet Debugger Timing

The Ethernet Debugger can be used to intercept and capture traffic between two Ethernet devices. The
device is normally not supposed to affect the Ethernet traffic itself. But for technical reasons, the device
can affect the traffic by introducing additional latency and jitter compared to a simple Ethernet cable.
This effect is minimal, but can matter for real time applications such as PTP. The goal of this document
is to provide information about the introduced latency and jitter, as well as actual measurements.

Online-Link11, PDF-Download12

7.2 Statements

7.2.1 Letter of Volatility

This letter describes volatile, non-volatile, and storage media on the specified product. Customers can
use this document to comply with security requirements and equipment handling procedures.

Online-Link13, PDF-Download14

Document version: 116 / Nov 21, 2024 12:51

11https://intona.eu/doc/in3038wp
12https://intona.eu/doc/in3038wp/pdf
13https://intona.eu/doc/in3037st
14https://intona.eu/doc/in3037st/pdf

29

https://intona.eu/doc/in3038wp
https://intona.eu/doc/in3038wp/pdf
https://intona.eu/doc/in3037st
https://intona.eu/doc/in3037st/pdf

	Introduction
	Features
	Requirements
	Restrictions
	Firmware Changelog
	Firmware 1.09
	Firmware 1.08
	Firmware 1.06
	Firmware 1.00

	Host Tool Changelog
	Host tool git master
	Host tool v1.6 (unreleased)
	Host tool v1.5 (bfafb93, windows build 72)
	Host tool v1.4 (60a3f48, windows build 66)
	Host tool v1.3 (cfbdb79, windows build 64)
	Host tool v1.2 (ff97f53)
	Host tool v1.1 (686fe4f)
	Host tool v1 (f5eed9c)

	Hardware Setup
	LED Meaning
	Port LEDs
	Main LED

	Software Installation
	Linux
	macOS
	Windows
	Windows 7
	Verifying Device Access
	Wireshark extcap Setup
	Linux, macOS
	macOS (app bundle)
	Windows

	Firmware Update
	Unix-like
	Windows

	Capturing
	Wireshark extcap
	Capturing Options
	Wireshark extcap Toolbar

	Directly Starting Wireshark from Host Tool
	Example

	Statistics
	Capturing to a File
	Example

	Selecting the Device
	Configuring the Buffer Size

	Other Features
	PoE Passthrough
	PTP Timestamps
	Supported Command Line Options
	Interactive Command Line
	Scripting
	Example

	Supported Commands
	IPC Interface
	Windows
	UNIX (Linux/Mac)
	Protocol
	IPC example
	Terminal 1
	Terminal 2
	Log message example

	Identify Function
	Latency Tester
	Introduction
	Instructions
	Sender setup
	Receiver setup
	Receiver file output
	Terminal Output of Latency Tester Example Run
	Example Output File (Partial)

	Packet Injection
	Example
	Command parameters

	Blocking Ports
	Packet Disruption
	Example
	Command parameters

	MDIO Access
	Raw MDIO access
	Changing PHY Ethernet Speed

	Device Settings

	Known Problems
	Further Readings
	White Papers
	Ethernet Debugger Timing

	Statements
	Letter of Volatility

