< Intona

IN3027UG: Asynchronous Sample Rate Converter IP User
Guide

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and
use of Intona products. To the maximum extent permitted by applicable law: (1) Materials are made
available "AS IS” and with all faults, Intona hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS,
EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
(2) Intona shall not be liable (whether in contract or tort, including negligence, or under any other theory
of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with,
the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or
consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered
as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or
Intona had been advised of the possibility of the same. Intona assumes no obligation to correct any errors
contained in the Materials or to notify you of updates to the Materials or to product specifications. You
may not reproduce, modify, distribute, or publicly display the Materials without prior written consent.
Intona products are not designed or intended to be fail-safe or for use in any application requiring fail-safe
performance.

© Copyright Intona Technology GmbH, Germany.
Intona and other designated brands included herein are trademarks of Intona in Germany and other

countries. All other trademarks are the property of their respective owners.

Website: https://intona.eu

https://intona.eu

Contents

1

Introduction
1.1 Features o o o e e e e e e e e
1.2 Requirements ittt it
1.2.1 Native Multipliers e
1.22 RAMbuffers e e
1.3 Licensingand Ordering L e
Application
2.1 Block Diagram e
Designing with the Core
3.1 AsynchronousMode e
3.2 SynchronousMode
33 ResetSignal. e e
34 HealthModule e
35 CoreClock o e
3.6 Quad Mode e e e
3.6.1 Downsampling from192kHz L o
3.6.2 Upsamplingto 192KkHz e e
3.7 Determining Latency e
3.8 Provided Application Examples L L
3.8.1 Common Signals and Parameters
3.8.2 Parallel pipelined Input and RAM-interfaced Output
3.8.3 TDM, Unidirectional e
3.8.4 TDM, Bidirectional
3.8.5 Massive Parallel
Simulation
4.1 Prerequisites to run the Simulation L o L.
42 RunningaSimulation L
4.2.1 Example: asrc_system_parallel 32ch o L.
Performance
51 THDHN . . oo e e e e e e e
52 FrequencyResponse e
53 GroupDelay e

Resource Utilization

6.1 Device

vs. Maximum Channel Count e

6.2 Channel Countvs. Occupied Slices i

Evaluation of the Core using Digilent Arty

7.1 Connectingthe Core o it i i e e e e e
711 ArtyPmod Pinout
712 FPGAPinoutMap e
7.1.3 Actual Connections e e e e e
7.1.4 Switches e e e
7.1.5 Status Indicators o e e e e e e e e
7.1.6 Signal Constraints e e

7.2 Binaries e e e e e e e e e

Appendix

8.1 Definitionof Speed Modes e e

W W wwww

SR

_

14
14
14
15

15
15
15

1 Introduction

1 Introduction

The Intona Asynchronous Sample Rate Converter solution comprises rate conversion to any number of
uncompressed PCM audio channels as Intellectual Property (IP) core. The design is FPGA-verified and
provided in human-readable Verilog-HDL. The solution excels in low latency and low logic resource

allocation at professional grade audio quality.

1.1 Features

The design consists of a polyphase FIR filter that feeds the subsequent convolution process, where the
actual resampling happens, with the desired intermediate values. The polyphase is selected out of 4096
predefined coefficients using cubic interpolation with 28 bits of decimal precision. Effective applied
taps are in the range of 8 to 66, depending on ratio and output samplerate. A latency counter is provided
within the simulation. Because of the uniform FIFO and interpolator interface, there is no conceptual

restriction in channel count.

Any arbitrary, synchronous or asynchronous upsampling or downsampling of 24 bit data in the range of
30 to 230 kHz is supported. The resulting THD+N within the audio band is typically better than -135 dB.
The channel count is always static and gets not reduced in double or quad mode. A high precision ratio

detector for asynchronous deployment is included.

The core is fully pipelined and designed to be as economical as possible regarding logic, RAM and multi-
plier use. Resource usage can be further optimized by using a fixed system sample rate and by omitting
the quad speed mode.

1.2 Requirements
Any FPGA that is capable to run the core logic at desired clock frequency.

Although this core does not require dedicated hardware building blocks such as multipliers or RAMs, it
is strongly recommended to make use of pipelined multipliers to achieve optimum speed vs. area.

For the simulation, Verilator and a C++ compiler on macOS or Linux is required. WAV files or VCD

logic files can be generated for inspection and verification.

1.2.1 Native Multipliers

The core uses 32x32-t0-36 bit multipliers as defined in asrc_mult32.v. This original Verilog version is
primarily used for simulation. In hardware, it is recommended to use one of the pre-generated cores.
Provided are cores for Spartan 6 and 7-series (all models). For other FPGA models, the designer may

generate those by using the FPGA vendor tools.

Usually, the coefficient core will utilize 4xMULT18/DSP48. The convolution kernel uses 4xMULT18/DSP48
per 32 channels.

1.2.2 RAM buffers

The coefficient data ROM and the FIFO buffers are described in pure Verilog-HDL and will be instanti-
ated automatically as dedicated RAM blocks by the synthesizing process.

1.3 Licensing and Ordering

This IP core solution is provided under the terms of the Intona IP Core License Agreement. For full
access to all HDL sources for core functionalities in simulation and in hardware you must purchase a

3 Designing with the Core

license for the core. Evaluation licenses are available in form of binary modules with hardware timeout.

Contact Intona f or information about pricing and availability.

Ordering code of this core is IN8083IP.

2 Application

In a typical application, the sample rate converter consists of three parts.

1. One or more Input FIFO(s) that can hold enough samples for the convolution. Any number of input
FIFOs may be connected to one core. Multiple variations are provided and can be used arbitrarily.
(a) asrc_fifo_parallel accepts pipelined parallel PCM input
(b) asrc_fifo_tdm_4x8 accepts serial TDM data with four strides, up to eight channels each
An input FIFO is basically a dual ported RAM. The designer is free to connect their own design in
place of the provided ones.

2. The core itself (asrc_core), which computes the right tap value for the convolution at the right time.
The core also determines the ratio between input and output when set to asynchronous mode. One
core is needed per direction. One core serves any amount of I/O channels.

3. One or more convolution kernels (asrc_convolute). Each convolution kernel applies the actual
resampling to the PCM data held in the respective input FIFO for up to 32 channels. The output
is always random access parallel PCM and may be double buffered. Several examples are provided

for converting the results to TDM or massive-parallel data.

For bidirectional resampling, the dedicated core asrc_core_bidir is provided. This actually instantiates
two cores that share one set of coefficients as dual-ported ROM. In contrast to using two unidirectional
cores in parallel, this saves LUT resources, and 8 to 12 kBytes of block RAM.

2.1 Block Diagram

—Async WCLK—>|
or Core

Ratio—»

= Convolution
Kernel(s)

Original PCM
Data

Resampled PCM T

Input FIFO(s) Data

3 Designing with the Core

It is recommended to use the sources directly by copying or sym-linking the contents of the rtl directory
to your FPGA hdl sources directory. The provided examples demonstrate how to use the core with a
variety of application scenarios.

If you prefer using pre-synthesized netlists, there are some helper scripts provided (ISE only). You need
to select a target in the target.cfg file and run ./make_netlist.sh in the top directory of the package. A
ngc file will be generated.

3 Designing with the Core

3.1 Asynchronous Mode

If the parameter MANUAL_RATIO is set to 0, the ratio between input and output word clocks is determined
by the core. The internal moving average detector measures the time between two word clock events at
26 bits precision. The time constant is about one second. It also calculates the reciprocal that is needed
to scale the output amplitude during downsampling. The direction signal reverses the average value

with the reciprocal, hence allowing resampling to upstream.

direction Description

1’b0 Resample arbitrary incoming audio to the internal clock

1’b1 Resample internal audio to the foreign clock

Connect the source of the foreign word clock to the async_weclk input.

Clock Domain Crossing
Asynchronous inputs need special attention. To avoid metastability, you should always
re-register them to the local high speed clock with a pipeline of at least two registers.

The asrc_core features the 8-bit output iodiv_out[7:0] , which is a copy of iodiv_r[30:23]. You may
use this as an indicator in your application if you need to know at which ratio the resampler is currently

working.

3.2 Synchronous Mode

If parameter MANUAL_RATIO is set to 1, the core does not derive the ratio from the input word clock. A
valid ratio and its reciprocal must be given in 4.28 fixed point format to iodiv_manual and iodiv_r_manual.

They may be changed arbitrarily at runtime without resetting the core.

async_wclk (the input pin for asynchronous word clock) is ignored in synchronous mode. The core just
eats up the samples that are fed into the internal FIFO by triggering new_frame synchronously. Just like
in asynchronous mode, there is no requirement on phase relationship between input and output word

clock (other than being synchronous to the high frequency core clock).

iodiv_manual must represent the 4Q28 fixed point value of Fs,, divided by Fs_,, and iodiv_r_manual, its

out

reciprocal.

Speed Mode In Speed Mode Out out_speedmode[1:0] iodiv_manual[31:0] iodiv_r_manual[31:0]

Single Single 2’do 32’h1000_0000 32’h1000_0000
Single Double 2'd1 32’h0800_0000 32’h2000_0000
Single Quad 2'd2 32’h0400_0000 32’h4000_0000
Double Single 2'do 32’h2000_0000 32’h0800_0000
Double Double 2'd1 32’h1000_0000 32’h1000_0000
Double Quad 2d2 32’h0800_0000 32’h2000_0000
Quad Single 2'do 32’h4000_0000 32’h0400_0000
Quad Double 2’d1 32’h2000_0000 32’h0800_0000
Quad Quad 2’d2 32’h1000_0000 32’h1000_0000

3 Designing with the Core

3.3 Reset Signal

The core is partly reset at active high of the reset input signal. You may tie this to your internal reset
logic. This pin is optional. Tie to 1'b@ if not used.

In general, there is no lockup situation known to that the core would need a reset. If it gets wrong signals,
it will output wrong values. If the fed signals become valid again, the core will resume with valid output.

Use the asrc_health module to mute or re-route your outputs if invalid signals are unacceptable.

3.4 Health Module

The asrc_health module checks some states and the “good” output goes high if the internal FIFOs are

not full or empty. It can be used to enable other circuity in the design, such as mute events.

3.5 Core Clock

The core is designed and tested to be clocked at 122.288 MHz for 48/96/192k or at 112.896 MHz for
44.1/88.2/176.4k sample rates. It expects the local frame sync to happen every fclk / fsamplerate, which
depends on the sample speed mode, as shown in the following table:

Sample Speed Core Clock Ticks per Output Frame

Single 2560
Double 1280
Quad 640

The core triggers at rising edge of the target frame sync signal (out_framesync).

In synchronous mode (MANUAL_RATIO=1) any other core clock can be accepted by the core, as long
the “ticks per output frame”, as stated in the table above value, is attainable. For example if your system
is clocked at 130 MHz, this will work perfectly fine.

3.6 Quad Mode

This core is designed to accept quad speed sample rates when the parameter QUAD_AVAIL is set to 1. Set-
ting it to 0 will save 4096 bytes of occupied RAM and the highest acceptable samplerate will drop to about
113 kHz.

There is no hysteresis in changing internal modes when changing sample rate arbitrarily. Notably the
edges between double and quad modes should be avoided. It is recommended to use the core within

following sample rates:
Usable ranges are:
Fs,, 30..113kHz and 115..230kHz.

The ratio between input and output samplerate must not be larger than 4.999.

3.6.1 Downsampling from 192 kHz

Downsampling from e.g. 192kHz to 48kHz is challenging because it would require 128 taps per Fs_,,
which is beyond the maximum of possible taps in this design. It is common to skip the first half of the
coefficients this case, effectively scaling it down to 64 taps. However, just skipping does not deliver

enough amount of alias image rejection and this is not satisfying the standards of professional audio

3 Designing with the Core

equipment. Hence, there is a second coefficient set available which is was optimized to 64 taps at quad
downsampling rates.

3.6.2 Upsampling to 192 kHz

The maximum number of possible taps shrink down because the core algorithm needs 32 clock cycles
to fetch and interpolate a polyphase tap. At 192 kHz, this would require a core clock of 245.76 MHz.
Because this clock is not possible with today’s budget FPGAs, this mode is implemented to use the
second coefficient set that is available in half of the original size.

3.7 Determining Latency

The simulation has a single-shot peak detector implemented. The Fs time of the first positive peak
of each input and output will be saved in a variable and the result is printed to the console when the
simulation is done. This could also be implemented as zero-crossing detector but that technique suffers

from false-positives when possible pre-ringing occurs, so peak detection is preferred.

Simulation done.

Measured latency: 10 fs_out samples

3.8 Provided Application Examples
3.8.1 Common Signals and Parameters
parameter QUAD_AVAIL

See Quad Mode.

parameter MANUAL_RATIO

See Synchronous Mode and Asynchronous Mode.

For other individual signals, see the source files for further explanation of the individual ports.

3 Designing with the Core

3.8.2 Parallel pipelined Input and RAM-interfaced Output

Parallel input words are fed into the resampler at rising edge of new_word. After 2€H-BITS words have
been fed, a new_frame pulse must follow to mark the end of frame.

The double buffered output can be read through the RAM interface with d_out_ch as address and d_out
as data.

module asrc_system_parallel_ramif

#(
parameter CH_BITS =5,
parameter QUAD_AVAIL =1,
parameter MANUAL_RATIO = @

)

(
input clk,
input reset,
input out_framesync,
input [1:0] out_speedmode,
input direction,
input async_wclk,
input [31:0] iodiv_manual,
input [31:0]1 iodiv_r_manual,
input new_word,
input new_frame,
input [23:0]1 d_in,
input [CH_BITS-1:0]

d_out_ch,

output [23:0] d_out,
output good

);

3 Designing with the Core

3.8.3 TDM, Unidirectional

Four lanes of eight channels, MSB first, with one-early frame sync
which handles four lanes of two channels.

. Also available as asrc_system_tdm_4x2,

module asrc_system_tdm_4x8

#(
parameter QUAD_AVAIL =1,
parameter MANUAL_RATIO = 1

)

(
input clk,
input reset,
input [1:0] out_speedmode,
output good,
input [31:0] 1iodiv_manual,
input [31:0] iodiv_r_manual,
input direction,
input async_wclk_in,
input tdm_in_bck,
input tdm_in_fs,
input [3:0] tdm_in_d,
input tdm_out_bck,
input tdm_out_fs,
output [3:0] tdm_out_d

);

0 | Maximum BCK frequency for the TDM modules is 24.576 MHz.

3 Designing with the Core

3.8.4 TDM, Bidirectional

Same as unidirectional, but duplicated ports for additional resampling to upstream direction. This makes
use of the bidirectional asrc_core_bidir, which will share the coefficient ROM between the two resam-

plers.

module asrc_system_tdm_4x8_bidir

#(
parameter QUAD_AVAIL =1,
parameter MANUAL_RATIO = 1

)

(
input clk,
input reset,
input [1:0] out_speedmode,
output good,
input [31:0] iodiv_manual,
input [31:0] iodiv_r_manual,
input direction,
input async_wclk_in,
input tdm_in_bck,
input tdm_in_fs,
input [3:0] tdm_in_d,
input tdm_out_bck,
input tdm_out_fs,
output [3:0] tdm_out_d,
// second resampler, other direction:
input [1:0] out_speedmode_1,
input tdm_in_bck_1,
input tdm_in_fs_1,
input [3:0] tdm_in_d_1,
input tdm_out_bck_1,
input tdm_out_fs_1,
output [3:0] tdm_out_d_1,
output good_1

);

10

3 Designing with the Core

3.8.5 Massive Parallel

No less than 32 parallel inputs and outputs.

module asrc_system_parallel_32ch

#(

parameter
parameter
input

input

input [1:0]
output

input [31:0]
input [31:0]

input
input
input
input [23:
input [23:
input [23:
input [23:
input [23:
input

output reg [23:
output reg [23:
output reg [23:

output reg [23:
output reg [23:

QUAD_AVAIL
MANUAL_RATIO

0]
0]
0]

0]
0]

0]
0]
0]

0]
0]

1,
1

clk,

reset,
out_speedmode,
good,

iodiv_manual,

iodiv_r_manual,

async_wclk_in,

direction,

wclk_in,
pcm_in_1,
pcm_in_2,

pcm_in_3,

pcm_in_31,

pcm_in_32,

wclk_out,
pcm_out_1,
pcm_out_2,

pcm_out_3,

pcm_out_31,
pcm_out_32

11

4 Simulation

4 Simulation

Simulation is done using the high performance open source Verilog simulator Verilator, which effectively
converts Verilog to C++. The output compiles to a native binary, which can be run on a PC.

4.1 Prerequisites to run the Simulation

Simulation presumes a Linux (or other Unix, e.g. Mac) command line terminal. On Win-
dows, this may work using WSL (Windows Subsystem for Linux).

Find dependencies and installation instructions of the Verilator simulation suite on this web site!. It is
recommended to build from Git.

On Debian-flavoured systems, the installation of Verilator including dependencies is simple:

sudo apt-get install verilator

4.2 Running a Simulation

The system top module, written in C++, generates a stimulus. This is one of static sine tone, swept sine
tone or Dirac impulse and it outputs a mono WAV file with the simulated result. Static sine tone is used
for THD+N calculation. Swept sine can be used to show aliasing images using sndfile-spectrogram
(which is part of libsndfile sndfile-tools?). The Dirac stimulus will create an impulse response that can

be used to inspect the frequency response by using deconvolution.

Verilator uses a much faster simulation technique than classical simulators, such as Icarus Verilog. You
can expect to simulate five seconds of signal in ten to thirty seconds on a decent machine. Classic simu-
lators would need several hours or even days for the same task.

For signal inspection using GTK Wave or the like, Verilator can output simulation data in VCD file
format. You need to set WRITE_TRACE to 1 at the top of the corresponding C++ file.

Example session to observe the signals using GTK Wave:

& Qe & e o & <3 & From: 245841920 ns To: 245682680 ns Y Marker: 245844129 ns | Gursor: 245847730 ns
- ssT Signals Waves
e Time

v . asrc_system clk=1
b ., astc_avrg sys_framesync =@
~ % asrc_convolute good =1

v .. asrc_mac new_frame =@

asre_muta2 new_tap =0

asrc_fifo_parallel new_word =0

. asrc_nealih taps_done =0

> 5, asrc_outbul parallel L)
- it astc_proc

» asrc_muits2
asrc_rom
b .2 genblki

Type Signals

wite BF[31:0]

wire BI[31:0]

wite CONST_131:0]

wite FRACT_POINT[31:0]
wite NOM_LENGTH[39:0]
wite NOM_LENGTH_S[31.0]
wite QUAD_AVAIL[31:0]
wire ROM_COEF_COUNT[31:0]
wire a[31:0]

wite add_q[31:0]

wite b[31:0]

wire ok

wite coef31:0]

wite coef_addr[12:0]
witecaef hwiat 0l

Fiter:

Append Insert Replace

_ microcode_a[4:0] =10

i microcode_a[4:0] =10

p[35:0] =0005A1DBD
sync_fs =0
accu_ch[4:0] =01
d_out_ch[4:0] =1F
accu_bufsel =1
last_sync_fs =0

loop=0
good =1

iodiv[31:0] =20000000
quad_mode <0

1 https://www.veripool.org/projects/verilator/wiki/Installing
2https://github.com/libsndfile/sndfile—tools

12

https://www.veripool.org/projects/verilator/wiki/Installing
https://github.com/libsndfile/sndfile-tools

4 Simulation

4.2.1 Example: asrc_system_parallel_32ch

This example takes the synthesizable asrc_system_parallel_32ch.v found in the examples directory. It
creates a signal and writes the resamples PCM to standard WAV files. The simulation stimulus is created
in asrc_system_parallel_32ch.cpp. The shell script asrc_system_parallel_32ch.sh helps with building
and running the simulation.

Run the simulation on the console with
./asrc_system_parallel_32ch.sh <what> <inrate> <outrate>
<What> is: 0=IR (Dirac) 1=sine 2=sweep

The example outputs 32 WAV files, following a special naming convention. Watch the console output.

$# ./asrc_system_parallel_32ch.sh 2 96003 48000
(some compiler output)

Simulation started using SIM_WHAT=sweep FS_IN=96003 FS_OUT=48000

fs_cnt=12000 fs_cnt_in=24000.750005 iodiv=20004189 iodiv_r=7ffef9d sr=96002.99996
out_data_count=11999 quad_mode=0 good=1

fs_cnt=24000 fs_cnt_in=48001.500821 iodiv=20004189 iodiv_r=7ffef9d sr=96002.99996
out_data_count=23999 quad_mode=0 good=1

Simulation done.

WAV file 'asrc_sim-96003-48000-ch_1-sweep.wav' written.
Spectrogram 'asrc_sim-96003-48000-ch_1-sweep.wav.png' written.
WAV file 'asrc_sim-96003-48000-ch_2-sweep.wav' written.
Spectrogram 'asrc_sim-96003-48000-ch_2-sweep.wav.png' written.

Simulation output file name convention: asrc_sim-<Fs in>-<Fs out>-<what>.wav

Inspect the WAV files with the tools of your trust.

13

5 Performance

5 Performance

5.1 THD+N

Measured THD+N @ 0 dBFS 1 kHz sine BW 22Hz-22kHz for exemplary.

Fs,, and Fs,, are completely separate, asynchronous systems

Fs,,.Hz Fs,, Hz THD+NdB

96000 32000 -143.7
96000 44100 -139.9
96000 48000 -145.5
96000 88200 -139.2
96000 96000 -144.7
48000 32000 -138.5
48000 44100 -137.1
48000 48000 -144.6
48000 88200 -140.2
48000 96000 -144.8
48000 192000 -145.7
48003 192000 -144.5

5.2 Frequency Response
Typical frequency response is +/-0dB at 0-18kHz and +0/-1.0dB at 0-20kHz.

Gain is about -0.05dB. This has not been set to 0 dB because of potential rounding errors of the scaling
gain when upsampling. The scaling gain is calculated by the reciprocal of the given iodiv value (which is
Fs;, divided by Fs

out)-

The response is optimized to get shortest group delay as possible. Having -1 dB at 20 kHz might be
considered a weakness by datasheet purists but this decision was the key to reach shortest group delay
while maintaining excellent aliasing rejection within the audio band.

Ilustrated frequency response represents double to single speed conversion with ratio=0.5. The actual
frequency response may vary over different ratios.

Inphase Filter Frequency Response Inphase Filter Frequency Response

20
0.0 0 e
\ \\
0.2 —+ \\\ 20 + \‘
\ o
@ \
o 40 | \
T 04 - | Q -0 ‘
£ \ £ \
g \ o 60
T
2 06 - \ E \
(= | =
2 \ é -80 + |
s 08 + “ =
\ 4100 +
1.0 -+ \
| 120 +
A2 7 | 140
1.4 ! ! ! | | | | | | -160 -
00 25 50 75 100 125 150 175 200 225 20 40 60 80 100 120 140 160 180 200

Frequency in kHz

Frequency in kHz

14

6 Resource Utilization

5.3 Group Delay

The phase response is linear. Hence, regardless of the frequency, the absolute latency always corre-
sponds to the group delay.

Fs;, FSour 1/Fs,,, Time (rounded)
48000 48000 19 396 us

96000 48000 18 375 ps

192000 48000 11 229 us

48000 96000 33 344 us

96000 96000 18 188 ps

192000 96000 11 115 ps

48000 192000 35 182 ps

96000 192000 19 99 ps

192000 192000 10 52 ps

The delay is subject to change by +- 1 sample (Fs,,,) because of some residual uncertain FIFO alignment

out
owed to asynchronous systems (but it won’t jitter).

The latency can be further reduced by 2-3 samples when lowering FIFO_COUNT_MIN in asrc_convolute.v if
limiting the maximum ratio is acceptable.

6 Resource Utilization

On the example of using TDM I/O, one direction, QUAD_AVAIL set to 0.

6.1 Device vs. Maximum Channel Count

Series Device Channels

Spartan 6 XC6SLX4 32
Spartan6 XC6SLX9 96
Spartan 6 XC6SLX16 224
Spartan 6 XC6SLX25 256
Artix 7 XC7A35T >1024

6.2 Channel Count vs. Occupied Slices

Series Channels Occupied Slices
Spartan 6 32 430
Spartan 6 64 510

For reference, XC6SLX9 has 1430 Slices.

15

7 Evaluation of the Core using Digilent Arty

7 Evaluation of the Core using Digilent Arty

An evaluation license with hardware timeout is available for this core in form of a ready-made bitstream.
The sources are included with the purchased license.

See instructions below.

7.1 Connecting the Core

7.1.1 Arty Pmod Pinout

VCC GND 8 signals

Bit numbers depicted in white digits.

7.1.2 FPGA Pinout Map

Pin Bit PmodJA PmodJB PmodJC Pmod]JD

Pin 1 0 G13 E15 U12 D4
Pin2 1 B11 E16 V12 D3
Pin3 2 A1l D15 V10 F4
Pin4 3 D12 C15 V11 F3
Pin7 4 D13 J17 U14 E2
Pin8 5 B18 J18 V14 D2
Pin9 6 A18 K15 T13 H2
Pin10 7 K16 J15 U13 G2

7.1.3 Actual Connections
Alls signals are LVCMOS 3.3V.

Direction (input or output) as seen from board perspective.

Pmod, Bit Direction Signal

JAO Input Input TDM Data Stride A (Channel 0..7 or 0..1)

JA1 Input Input TDM Data Stride B (Channel 8..15 or 2..3)

JA2 Input Input TDM Data Stride C (Channel 16..23 or 4..5)

JA3 Input Input TDM Data Stride D (Channel 24..31 or 6..7)

JA6 Input TDM Bitclock for inputs

JA7 Input TDM FS for inputs

JCoO Output “fifo good”

JC2 Output Master Clock Derived divided by 512

JC3 Input Asynchronous FS input (e.g. tie to JA7 or JD7 depending on the “direction” switch)
JDO Output Resampled TDM Data Stride A (Channel 0..7 or 0..1)
JD1 Output Resampled TDM Data Stride B (Channel 8..15 or 2..3)
JD2 Output Resampled TDM Data Stride C (Channel 16..23 or 4..5)

16

7 Evaluation of the Core using Digilent Arty

Pmod, Bit Direction Signal

JD3 Output Resampled TDM Data Stride D (Channel 24..31 or 6..7)

JD4 Input 24.576 MHz Master Clock 50% duty (fed to PLL for internal high speed clock)
JD6 Input TDM Bitclock for outputs

JD7 Input TDM FS for outputs

7.1.4 Switches

Indicator Description

SWO out_speedmode(0]
SW1 out_speedmodel[1]
SW2 Direction

SW3 LD4 on/off

7.1.5 Status Indicators

Indicator Description

LD4 on state of SW3, to verify switch knob direction
LDé6 fifo good”
LD7 7 Hz blink

7.1.6 Signal Constraints

0 30 60 90 120 150 180 210 240 270
BCK ? \ / [[\ / \ / | / \
14— tBCKw i—tFSs —» +—tDs —
Fs /
+— tFSh —/|
DATA M5B [30){ 29 [28){ 27
+—tDh —!

Name Min

tBCKw 20 ns

tFSs 16 ns
tFSh 16 ns
tDs 16 ns

tDh 16 ns

When using the 32-channel example, you may run into signal integrity issues because of
the high bit clock frequency. Keep cables short and groundings low-z.

17

7 Evaluation of the Core using Digilent Arty

7.2 Binaries

Pre-made binaries for evaluation are included in the src/target/Arty_xxx/build directory.

Target Description

Arty_4x8 Four TDM I/O, eight channels each
Arty_4x2 Four TDM I/O, two channels each

How to flash the demo binary to the board

1. Connect the Micro-USB of Arty board to your host computer
. Run or flash the file .bin-file either using openFPGAloader? or if you prefer full-stack double click-

N

ing, use the guide linked here*
. Press the PROG button
. The DONE led turns on after a second
. LD7 flashes at a frequency of approx. 7 Hz if your input clock is valid

N U1 A~ W

. The IP is up and running

When using the 32-channel example, quad speed mode output is not working because this

would violate the maximum bit clock frequency of 24.576 MHz.

Shttps://github.com/trabucayre/openFPGALoader
“https://reference.digilentinc.com/learn/programmable-logic/tutorials/arty-programming-guide/start?redirect=1#programmi
ng_the_arty_using_quad_spi

18

https://github.com/trabucayre/openFPGALoader
https://reference.digilentinc.com/learn/programmable-logic/tutorials/arty-programming-guide/start?redirect=1#programming_the_arty_using_quad_spi
https://reference.digilentinc.com/learn/programmable-logic/tutorials/arty-programming-guide/start?redirect=1#programming_the_arty_using_quad_spi

8 Appendix

8 Appendix

8.1 Definition of Speed Modes

This document makes use of the term "speed” as a reference to original 44.1k or 48k sample rates. Fol-

lowing table clarifies the relationship.

Sample Rate Resulting "Speed”

30000 to 56500 Single
57000 to 113000 Double
114000 to 230000 Quad

Document version: 106 / Okt 19, 2023 08:50

19

	Introduction
	Features
	Requirements
	Native Multipliers
	RAM buffers

	Licensing and Ordering

	Application
	Block Diagram

	Designing with the Core
	Asynchronous Mode
	Synchronous Mode
	Reset Signal
	Health Module
	Core Clock
	Quad Mode
	Downsampling from 192 kHz
	Upsampling to 192 kHz

	Determining Latency
	Provided Application Examples
	Common Signals and Parameters
	Parallel pipelined Input and RAM-interfaced Output
	TDM, Unidirectional
	TDM, Bidirectional
	Massive Parallel

	Simulation
	Prerequisites to run the Simulation
	Running a Simulation
	Example: asrc_system_parallel_32ch

	Performance
	THD+N
	Frequency Response
	Group Delay

	Resource Utilization
	Device vs. Maximum Channel Count
	 Channel Count vs. Occupied Slices

	Evaluation of the Core using Digilent Arty
	Connecting the Core
	Arty Pmod Pinout
	FPGA Pinout Map
	Actual Connections
	Switches
	Status Indicators
	Signal Constraints

	Binaries

	Appendix
	Definition of Speed Modes

