
IN3041UG: AVALOT API

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and
use of Intona products. To the maximum extent permitted by applicable law: (1) Materials are made
available ”AS IS” and with all faults, Intona hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS,
EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
(2) Intona shall not be liable (whether in contract or tort, including negligence, or under any other theory
of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with,
the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or
consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered
as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or
Intona had been advised of the possibility of the same. Intona assumes no obligation to correct any errors
contained in the Materials or to notify you of updates to the Materials or to product specifications. You
may not reproduce, modify, distribute, or publicly display the Materials without prior written consent.
Intona products are not designed or intended to be fail-safe or for use in any application requiring fail-safe
performance.

© Copyright Intona Technology GmbH, Germany.
Intona and other designated brands included herein are trademarks of Intona in Germany and other
countries. All other trademarks are the property of their respective owners.

Website: https://intona.eu

https://intona.eu


Contents
1 Introduction 4

1.1 AVALOT is a AES67 compatible network audio device . . . . . . . . . . . . . . . . . . . . 4
1.1.1 Mediaclock, phase-coherence and PTP . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 SAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 SAP Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.4 Session Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.5 IGMP in consumer switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 The API protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
User => Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Device reply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 UART Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.1 Finding the device on the network . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Sending and receiving commands (via CLI on Linux/macOS/msys) . . . . . . . . . 6
1.3.3 Setting up audio streaming (via CLI) . . . . . . . . . . . . . . . . . . . . . . . . . . 6
User => Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Device reply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
User => device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Persistence and reboots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Firmware updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 API protocol definition 9
2.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Network layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 JSON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Reponses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.5 Extensibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.6 Packet drops and reordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.7 Retrieving updates and events from a device . . . . . . . . . . . . . . . . . . . . . 11

3 API protocol reference 12
3.1 device_info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
User => Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Device reply (prettified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.4 Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.5 product_id (Product IDs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.6 net (Network settings/state) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.7 ui (UI fields) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.8 stream (AES67 settings) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.9 Example using output_channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
User => Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.10 rtp (AES67 manual session) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.11 Manual session configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.12 Multiple RTP streams with port ranges . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.13 PTP clock selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.14 streams (AES67 session list) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.15 rtp (RTP state) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.16 logging (Logging state) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.17 link_state (Ethernet ports link state) . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2



Contents

Device reply (prettified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Device reply (prettified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.18 Metering mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 set_params . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
User => Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Device reply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
User => Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Device reply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 show_rtp_status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.2 Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.3 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
User => Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Device reply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 sap_purge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.2 Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.3 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 blink_leds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5.2 Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5.3 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.6 reset_settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6.2 Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6.3 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.7 reboot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7.2 Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7.3 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
User => Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3



1 Introduction

1 Introduction

1.1 AVALOT is a AES67 compatible network audio device

AVALOT devices receive and generate network audio streams that meet the AES67 standard. The con-
figuration is easily and portably done in a human-readable JSON format over UDP or UART.
Some design decisions have been made which will be discussed briefly in the following.

1.1.1 Mediaclock, phase-coherence and PTP

As a receiver, the media clock is always extrapolated from the actual audio stream. The separately re-
ceived PTP time is used exclusively for aligning the link offset, which ultimately ensures the phase co-
herence of all devices on the network with each other. The advantage of this procedure is that even in
the absence or failure of the PTP system, there will be no disruption to the audio playback. Therefore,
there are multiple lock levels. The audio playback is interrupted only if RTP lock is lost. However, this
is only the case if the data stream does not arrive at the device.

1.1.2 SAP

SAP (Session Announcement Protocol) is required for AVALOT, but optional in AES67. Other session
management protocols may be supported in the future. It’s also possible to configure a static AES67
session without using SAP.

1.1.3 SAP Caching

AVALOT devices send out cached SAPs at a relatively high rate. The SAP was specified for old network
technology and prioritized reducing traffic. AVALOT devices are likely used in environments where ev-
ery second can count. This ”SAP replication” can help if devices need to be setup very quickly. Likewise,
SAP timeouts were reduced to avoid listing stale sessions.

1.1.4 Session Identification

The stream name (SDP ”s” field) is used to uniquely identify sessions. Duplicate names are considered
an invalid misconfiguration

1.1.5 IGMP in consumer switches

IGMP is the protocol for controlling multicasts in the network. The state of IGMP implementations in
many consumer switches is very poor. This situation has been thoroughly analyzed and a workaround
has been implemented to improve the situation. This is supposed to help against badly implemented
IGMP-snooping. (See igmp_hack.)

1.2 The API protocol

The device can be configured over network. It exchanges commands and responses as JSON objects. The
main intention is that this is used as API by control programs, although you can also send and receive
raw commands manually.

Each UDP packet contains one or multiple commands as JSON objects, formatted as single line of text.
These UDP packets are sent to port 7054. The device will respond with an UDP packet containing JSON
object, sent back to the sender’s IP, MAC and UDP port.

Here is an example:

4



1 Introduction

User => Device

{"command": "set_params", "api_version": 6, "seq": 123, "stream": {"name":
"HDLM8-1302 : 8", "link_offset": 48, "output_channels": [0, 1, 2, 3] }}

Device reply

{"seq": 123}

Here the ”set_params” command is used to subscribe theAES67 stream that was propagated as ”HDLM8-
1302 : 8”. The reply indicates success, because it does not contain an ”error” field. The ”seq” field is for
free use by the sender (but must be a JSON number), and will be sent back with the reply. It can be used
to associate responses with commands.

Erroneous requests (including JSON syntax errors etc.) will result in a response with the ”error” field set.

1.2.1 UART Interface

The hardware module can be addressed internally in the same API language via serial UART interface
(115200 Baud, 8N1), with the advantage that the network connection does not have to be configured. This
is specifically tailored to the OEM integrator to access the module internally, and in every situation.

Every packet sent over UART must be either terminated with a null byte or a new line character (either
’\n’, ’\r’ or both). The sent data is immediately sent back as an echo. This facilitates human interaction
with the interface and creates a practical termnial. However, this might be a problem if software is
to use the interface automatically. To disable echo, the character 0x01 (i.e. byte value = 1) can be sent.
AVALAOT will no longer send an echo for the remaining power cycle. In your software code, it is
recommended that each command just starts with a 0x01 byte.

All packets sent by AVALOT end with ’\n’ plus null byte.

Note: it is quite possible that additional debug information is sent via the serial port. This is not packaged
in JSON format. The recipient should therefore check whether the lines start with ’{’ and end with ’}’ in
order to distinguish the debug output from JSON data.

1.3 Getting started

This section shows how to initialize the device and how to start audio streaming.

1.3.1 Finding the device on the network

Unless configured otherwise, each device uses an automatically assigned link-local IP address (RFC
3927)1. Addresses start at 169.254.1.0, but are generally unpredictable and unstable. For example, if
a device is restarted, it may pick a different address. Usually, it will attempt to reuse the previous ad-
dress, but you cannot rely on this. (You could use the set_params command to assign a static address to
a device to avoid this.)

You should perform device discovery by sending device_info commands to the broadcast address
(169.254.255.255). These commands can be sent periodically to provide live updates on settings, and
whether the device is still up. To avoid overloading the device, an update period of no shorter than 500
ms is recommended. This is especially important if several clients are on the network.

1https://tools.ietf.org/html/rfc3927

5

https://tools.ietf.org/html/rfc3927


1 Introduction

Use the device_id field (queried with device_info) as unique, stable device identifier.

1.3.2 Sending and receiving commands (via CLI on Linux/macOS/msys)

Since the protocol simply sends and receives UDP packets containing JSON text, you can send and re-
ceive commands with common open source tools:

rlwrap -S '> ' nc -u 169.254.1.0 7054 | jq

nc sends and receives UDP packets (as text in this case), rlwrap provides line editing and a history, and
jq pretty prints JSON responses.

1.3.3 Setting up audio streaming (via CLI)

The device supports SAP (SessionAnnouncement Protocol, RFC 2974)2 AES67 session discovery. Passive
discovery is always active. The device does by default not play any audio from network. The network API
can be used to play a specific stream.

All important settings and information can be queried with:

User => Device

{"command": "device_info"}

Which results in this reply (only AES67 relevant parts shown):
2https://tools.ietf.org/html/rfc2974

6

https://tools.ietf.org/html/rfc2974


1 Introduction

Device reply

{
...
"stream": {
"name": "BKLYN-II-0d0c9a : 31",
"link_offset": 48,
"gain_db": 0,
"output_channels": [ 0, 1 ]

},
"streams": {
"list": [

{
"n": "BKLYN-II-0d0c9a : 31",
"i": "1 channels: Analog R",
"c": 1

},
...

]
},
"rtp": {
"lock": 3

},
...

}

This example run returned two AES67 sessions. The device is streaming the first one (according to the
stream.name field).

A specific session can be selected with:

User => device

{"command": "set_params", "stream": {"name": "BKLYN-II-0d0c9a : 32"}}

The set_params command has a large number of parameters, which can be used to control every detail
about the device. The stream.name parameter controls which session should be selected. Internally,
the name is matched against the internal list of sessions, and the first matching session is selected. By
default, the name is empty, and no session matches.

The streaming status is indicated by the rtp.lock field.

Using this command persists all set parameters to the device flash memory (see section below).

1.4 Persistence and reboots

Most device settings are persistent. They are written to flash memory. After boot, the settings are re-
stored from flash. There is a delay of about 1 second before the device starts writing the changed settings
to the flash. This delay counts since the most recent change. For this reason, the device should not be
power cycled immediately after a change. (The device should survive power cycles at any possible mo-
ment, but recently changed settings will not be restored.)

7



1 Introduction

It can take a while until a rebooted device recovers and streams audio. The following processes incur
additional delays:

• Waiting for SAP announcements. (Unless they are cached on flash; if they are not cached, not
replicated by other devices, and the sender is a Dante device, it can take up to 30 seconds.)

• Waiting for PTP clock stabilization. (Requires receiving at least 2 PTP announcements, streaming
may start before; can take about 2 seconds.)

However, when already subscribed to an active stream, the time until valid audio data is played then
depends only on establishing the network link in the PHY chip. This is usually one to three seconds
after powering up.

The processes listed above happen in parallel. For network API access, the device needs to negotiating
a link layer IP address, which takes about about 7 seconds on average. If static IP configuration is used,
the API is available as soon as the network link is up.

1.5 Firmware updates

The device runs a TFTP server for firmware updates. It accepts firmware binaries under the name
”firmware.bin”. All other files are rejected. Update can be done with any TFTP client, for example curl:

curl -T path/to/firmware.bin tftp://169.254.1.0

Firmware updates require a reboot. Firmware updates can reset all or some setting.

8



2 API protocol definition

2 API protocol definition

2.1 Basics

2.1.1 Network layer

The protocol uses JSONencoded inUTF-8 text, encapsulated inUDP. EachUDPpacket payload contains
exactly 1 JSON object (a list of fields enclosed with ”{” and ”}”). A JSON object cannot span multiple
UDP packets. A JSON object represents a single command. The convention is to add a trailing newline
character (”\n”, ASCII 0x0A) at the end of the JSON text.

UDP packets are exchanged between devices and API clients. Clients send commands as UDP packets
to port 7054. The device will attempt to send a response packet back to the client immediately, using the
command packet’s source IP/port as destination IP/port for the response packet.

The device does not support receiving fragmented IP packets. All commands are assumed to fit within
1472 bytes of UDP payload. On the other hand, responses by the device may be sent as fragmented UDP
packets if they exceed the MTU.

A MTU of 1500 bytes is assumed.

Be aware that UDP is an unreliable protocol. Packet loss and reordering is possible. The device sends
exactly one response for each request, and this response could get dropped by the network. If you do
not receive any response, you cannot know whether the request or response was dropped (or whether the
device went offline). Youmay have to repeat the request until you get a response (assuming the command
is idempotent - most are). Since the network has to reliably transport AES67 streams, it is assumed that
everything operates with some headroom below the maximum possible network bandwidth, and packet
dropping does not actually happen in practice.

2.1.2 JSON

JSON, as used by the AVALOT API protocol, is specified by RFC 82593 and RFC 74934. The protocol
requires that all top-level JSON values are JSON objects, and that each packet contains a single JSON
object. In particular, it is assumed that JSON numbers use double floats (binary64 in IEEE 754-20085),
which limits their integer precision to about 53 bits (see RFC 7493 section 2.26 for details).

The command reference will use the term ”integer” for numbers which are representable as signed 32
bit integers (sometimes unsigned 32 bit integers).

2.1.3 Commands

The UDP payload consists of text that can be parsed as a single JSON object. There must be no 0 bytes
or other non-text data. Whitespace can be present, but should be avoided to reduce the packet size. A
final newline should be added at the end of the JSON text. (It’s currently not required, but this is a threat
that this may change.)

On the IP level, the command must be a single IP fragment.

Each JSON object sent to the device represents a single command. It can contain the following fields:

Name Type Meaning

command String Required. Name of the command to run.

3https://tools.ietf.org/html/rfc8259
4https://tools.ietf.org/html/rfc7493
5https://en.wikipedia.org/wiki/IEEE_754-2008
6https://tools.ietf.org/html/rfc7493#section-2.2

9

https://tools.ietf.org/html/rfc8259
https://tools.ietf.org/html/rfc7493
https://en.wikipedia.org/wiki/IEEE_754-2008
https://tools.ietf.org/html/rfc7493#section-2.2


2 API protocol definition

Name Type Meaning

seq Number Sent back with responses, and is otherwise not interpreted or changed by the device.
api_version Integer Optional, but passing this is highly recommended. The current protocol version is 7.
add_crc Boolean If true, a CRC will be appended to the JSON data of the response. (See Responses

section below.)
(other) ... Command specific parameters are located in the same top-level JSON object.

All fields except ”command” are optional. The ”api_version” should also be passed.

The most important commands are ”device_info” and ”set_params”. All other commands are obscure
and rarely needed.

2.1.4 Reponses

Responses indicate success or failure of a previously sent command. There is exactly one response per
command. (Minus dropped network packets.)

The payload contains a single line of JSON text, with redundant whitespace trimmed (clients shouldn’t
rely on this) and a single newline character at the end (clients can rely on this).

On the IP level, large responses are sent as multiple IP fragments. These are reassembled to a large
UDP packet, whose payload follows the described format. Large responses usually happen with with
”device_info” commands, and can be mostly avoided by using the ”select” parameter.

The response JSON object contains the following fields:

Name Type Meaning

seq Number Always present. The same value as the command packet, or 0 if it was absent.
response String Command which triggered this response. May be missing if unknown or the

firmware is old. Present since api_version 7.
api_version Integer API revision used by device. Present since api_version 7.
error String If present, a protocol error of some kind has happened. This is usually used for

malformed commands only. It’s a string value, that contains an error message.
It is not intended to be machine-readable.

warning String If present, warnings or errors. This is a string value and contains newline
characters (one message per line). This is not necessarily an error. It is not
intended to be machine-readable. The main use of this field and the ”error”
field is to help with debugging.

(other) ... Command specific response fields are located in the same top-level JSON object.

If ”add_crc” was set to true in the command, the response packet uses a slightly modified format. The
four byte sequence ”\n//#” (0a 2f 2f 23 in hex) is appended after the JSON payload (instead of a final ”\n”
byte), followed by 8 ASCII digits representing the CRC32 of the payload before the four byte header.
For example, the byte sequence ”0a 2f 2f 23 61 39 34 64 61 31 65 61” at the end of the packet indicates
the CRC32 value 0x a94d a1ea. If present, this byte sequence will always be 12 bytes long and end with
the packet’s payload. The CRC32 uses the same polynomial as Ethernet and zlib. This can be useful if
fragmented UDP packets occur, and the UDP checksum is not trusted. (In single fragment cases, the
packet is protected sufficiently by the Ethernet CRC.) The format was chosen such that we can claim it’s
still a text based protocol. Naive clients can just not set this field. Then the ”\n” byte is always the last
byte of the payload, and the only one in the payload.

10



2 API protocol definition

2.1.5 Extensibility

JSON was picked as base of the AVALOT protocol to make it easier to extend the protocol in the future.
For this reason, both device and clients must make the following assumptions:

• The ordering of objectmembers is arbitrary. Both the device and the client are required to deal with
any ordering of members in an object. It is possible that members change their order on firmware
updates, or randomly.

• Unknown object members should be ignored. The device will add a warning to the response object
if an object member is unknown, but will otherwise ignore it.

• If new parameters are added to a command, it must be done in a backward compatible way.
• Any code handling commands or responses must be forward compatible, and ignore unknown pa-
rameters.

2.1.6 Packet drops and reordering

UDP can drop or reorder packets. Clients can use the ”seq” field to avoid confusion due to reordering. It
can also be used to detect packet drops (for example, if no response for a command is received, the client
can issue a redundant command to check whether the device is still operating). If a response is lost, the
client does not know whether the command was executed, or the result status. In this case the client
needs to check the device state, or send the command again to be sure.

2.1.7 Retrieving updates and events from a device

There is no mechanism for receiving any kind of events with the API. Poll the device by sending de-
vice_info commands. A polling period of 500 ms or higher is recommended.

11



3 API protocol reference

3 API protocol reference

All commands can include standard parameter fields described in the section above. The same applies
to responses. Only command-specific request/response fields are listed in the tables below.

3.1 device_info

Retrieve information about device firmware, AES67 settings/status/session list, and more.

3.1.1 Description

This command reports general information about device and network status. This command should be
used for device discovery.

The ”set_params” command is an important companion command. It mirrors most fields in the ”de-
vice_info” command, and can be used to set the corresponding fields. All references to setting fields in
the parameter description above is in context of the ”set_params” command.

The ”select” field can be used to retrieve only some information. It is an array of strings, where each
string is the name of a JSON sub-object. Only sub-objects mentioned in this list are sent in the response.
For example, if you send select:[ "net"], then other sub-objects like ”streams” are not sent, only the
”net” sub-object. If the field is missing, everything is sent.

3.1.2 Example

User => Device

{"command": "device_info", "seq": 123, "api_version": 6}

12



3 API protocol reference

Device reply (prettified)

{
"seq": 123,
"product": "ISAAC",
"firmware_version": "v1.5.2",
"api_version": 6,
"fw_date": 1654077358,
"device_id": "00313753384d37373038303432303139",
"product_id": 1001,
"net": {
"mac": "1A:7D:9C:4F:26:3A",
"ip": "169.254.225.237",
"static_ip": "0.0.0.0",
"igmp_hack": true

},
"stream": {
"name": "AVIOUSB-5346cb : 2",
"link_offset": 48,
"gain_db": 0,
"output_channels": [ 0, 1 ]

},
"streams": {
"list": [

{
"n": "AVIOUSB-5346cb : 2",
"i": "1 channels: Left",
"c": 1

}
]

},
"rtp": {
"lock": 0

},
"ui": {
"order": 0,
"name": "",
"loc": "",
"memo": ""

},
"logging": {
"en": false

}
}

3.1.3 Parameters

13



3 API protocol reference

Member Type Meaning

select JSON array Optional. Each array item must be a string. Each string can be the key of a
sub-object to include in the response. If missing, all sub-objects are returned.

metering Bool Enable metering data broadcast.

3.1.4 Response

Member Type Meaning

product String General product ID. This is a legacy thing and shouldn’t be used anymore.
Always ”ISAAC” (read-only).

firmware_version String Firmware version identifier, usually a release version string (read-only).
Note: never parse this in program code! Some firmware binaries use a
git hash instead of a version number.

api_version Integer API revision used by device, may be different from client’s version in
”api_version” field (read-only).
Note: older firmware versions do not have this field.

fw_date Integer UNIX-time of firmware build date (read-only).
Note: older firmware versions do not have this field.

fw_magic Integer 32 bit unsigned firmware magic, used to check which firmware to send on updates.
Note: some older firmware builds send a signed 32 bit number, or do not have this field.

device_id String 128 bit globally unique hardware identifier in hexadecimal, for example
”00313553504e52433033303436303535”. This is the device’s builtin
UUID. It never changes, unless the hardware is physically replaced. (Read-only.)

firmware_update_error String Optional. If present, a human readable error description on firmware
update errors. Always cleared on reboots. (Read-only.)

product_id Integer Product ID (see table below). (Read-only, normally.)
hw_channels Integer Available audio channels in this hardware.

Note: older firmware versions do not have this field. Treat the value to 1
by default.

net Object Network settings/state (see table below).
ui Object Informational fields for the Network Manager GUI (see table below).
stream Object AES67 parameters (see table below).
streams Object AES67 stream list (see table below).
rtp Object AES67 state (see table below).
logging Object Logging control (see table below).
link_state Object Ethernet port(s) link state (see table below).

3.1.5 product_id (Product IDs)

The ”product_id” field contains a fixed number that is defined by Intona and used to differentiate be-
tween different types of end devices.

Raw value Name

0 (Never used, might happen on major device flash corruption.)
1 .. 999 Reserved for third party.

14



3 API protocol reference

Raw value Name

1000+ Maintained by Intona, ask them.

3.1.6 net (Network settings/state)

The response ”net” field is an object with the following fields:

Member Type Meaning

mac String Current MAC address, formatted as 6 groups of 2 hexadecimal numbers
separated by ”:”, for example ”AB:CD:12:34:56:7E”. (Read-only.)

ip String Current IP address formatted as quad-dotted IP address, for example
”169.254.1.0”. (Read-only.)

static_ip String Configured static IP address (the same format as the ”ip” field), or
”0.0.0.0” if the IP address should be dynamically allocated. Applied after
device reboot.

igmp_hack Boolean If true, enable an IGMP workaround, that is supposed to help with
broken IGMP-snooping switches. (Enabled by default.)

3.1.7 ui (UI fields)

The response ”ui” field is an object with the following fields:

Member Type Meaning

order Integer Order ID (used for GUI device list sort order).
name String User-assigned device name (max. 127 bytes).
loc String User-assigned device location text (max. 127 bytes).
memo String Text field for free use (max. 127 bytes).

The strings are supposed to be encoded as UTF-8 (usually enforced by JSON), though the device will
accept any encoding in JSON or these fields.

None of the values in this object are actually interpreted by the firmware. They are for use by GUI tools.

3.1.8 stream (AES67 settings)

The response ”stream” field is an object with the following fields:

Member Type Meaning

name String Stream name, used to select session.
link_offset Integer Link offset in samples.
gain_db Float Gain correction in dB. Must be <= 0.

15



3 API protocol reference

Member Type Meaning

output_channels Integer Array Deprecated, use ”ch0”...”chn”.
Set the source channel for
each hardware output,
starting from 0. Set -1 to
disable the source.
If a stream source channel is
unavailable, it will
be treated as ”-1” and muted.

ch0 .. chn Integer Set the source channel for the first hardware output,
starting from 0. Set to -1 to mute this output.

rtp Object Manual AES67 session
settings (see table below).

Note: there are two methods to set the source channel(s). Using of ”chn” is recommended. If both
”output_channels” and ”ch0” are given in the same command, the behaviour is undefined.

3.1.9 Example using output_channels

User => Device

{"command": "set_params", "stream": { "ch0": 0, "ch1": 2, "ch2": -1, "ch3": 2 }}

Assuming four hardware outputs, the example above sets the audio sources as follows:

Hardware Output Stream Channel

0 0
1 2
2 muted
3 2

3.1.10 rtp (AES67 manual session)

The response ”rtp” field is an object with the following fields:

Member Type Meaning

en Bool Manual session enabled. If true, stream.name is ignored, and the settings below
are used to receive the AES67 stream.

ip String RTP destination IP address formatted as quad-dotted IP address, usually a multicast
address, for example
”239.81.83.67”.

dp Integer RTP UDP destination port, for example 5004. Ignored if 0.
dc Integer RTP UDP destination port count. Set this to 0 or 1 if unused. If larger than 1, this

assumes multiple RTP streams. See remarks below for details.
sp Integer RTP UDP source port. Ignored if 0. This should normally be set to 0, but some

AES67 sources require using this.

16



3 API protocol reference

Member Type Meaning

sc Integer RTP UDP source port count. Set this to 0 if unused. This cannot be combined
with a dc port range. See remarks below for details.

sr Integer RTP audio data sample rate, for example 48000.
ss Integer RTP audio sample size. Must be 16 or 24.
cc Integer RTP audio channel count, for example 2. If multiple RTP streams are used, this is

the total channel count.
pt Integer RTP payload type. This is the PT field in the RTP header. 96 is a common value.
ci String PTP clock ID. This is the clockIdentity PTP header field, as little endian

64 bit number (byte swapped), as a JSON string. If this is 0, matching the
clock ID is disabled (this uses 0 as magic value and assumes no real PTP clock
uses this value). It is formatted as a JSON string because JSON numbers are usually
not 64 bit safe. Sender/receiver may format this as decimal, or as hex by
prepending ”0x” to the number.

cd Integer PTP domain number. This is the domainNumber PTP header field. If ”ci” is set to
a value other than 0, this field is ignored. If ”ci” is set to a value of 0,
the domain number is used to select the PTP clock.

3.1.11 Manual session configuration

If ”en” is set to true, manual session configuration is enabled. In this case, the selected SAP session is
ignored. None of its parameters are used for streaming audio. Only the manual session configuration
fields are used. Settings other than the session selection, such as link_offset or output channel selection,
are still used. You should normally set the ip, dp, sr, ss, cc, pt, ci fields. Verify them before attempting to
stream. Use other fields only if you know what you’re doing.

3.1.12 Multiple RTP streams with port ranges

The dc field can be used to stream from multiple RTP sub-stream. All sub-streams must use the same
audio format, PTP clock, and channel count. Each sub-stream is identified by its UDP port and must
use the same RTP parameters and IP destination address. The first port is given by the dp value, the last
port is dp+dc-1. The dc field sets the number of RTP sub-streams. The total number of channels (set by
cc) must be the RTP packet channel count multiplied with the number of ports (set by dc).

It is possible to use a source port range to identify RTP sub-streams with the sp and sc fields. This should
normally not be used, but some AES67 sources use the same UDP destination port and require using the
source port to distinguish streams. You cannot use both destination and source port ranges at the same
time. (If a source/destination port range is used, the destination/source port must be either a single port,
or unset by specifying 0. If the port is unset, RTP packets with any ports are accepted.)

3.1.13 PTP clock selection

The ci field is normally used to select the PTP clock source and the preferred method. Using the cd field
is not recommended, but it is needed with some AES67 sources. the cd field value is used only if ci is set
to 0.

3.1.14 streams (AES67 session list)

The response ”streams” field is an object with the following fields:

17



3 API protocol reference

Member Type Meaning

list JSON array Actual session array, see below.

Each item in the ”list” array is an object with the following fields:

Member Type Meaning

n String Session name
i String Session info
c Integer Channel count

This is the list of discovered sessions. The session name is the ”s” field in the SDP, and is compared to
stream.name to select a session. The session info is the ”i” field in the SDP. The channel count is also as
indicated in the SDP, and gives the upper range of the stream.output_channels field (exclusive).

3.1.15 rtp (RTP state)

The response ”rtp” field is an object with the following fields:

Member Type Meaning

lock Integer AES67 streaming state

The lock field can have the following values:

Raw value Meaning

0 No PTP, no RTP data
1 PTP locked, but no RTP data
2 No PTP, but RTP locked
3 PTP and RTP locked

”Locked” in this context means ”synchronized to”. Streaming is possible at state 2 or 3. State 2 may be
indicated by a blinking yellow Ethernet port LED, at state 3 it glows normally. RTP is for Real-Time
Transfer Protocol, the part of AES67 that transports actual audio data over network.

3.1.16 logging (Logging state)

The response ”logging” field is an object with the following fields:

Member Type Meaning

en Boolean Whether logging is enabled

Logging is a debug feature. The log is useful to firmware developers only. Technically inclined people
may be able to interpret parts of the log, but it’s not recommended. Logging makes the device broadcast
UDP packets to IP 255.255.255.255 on port 7055. The log state is off by default, and is not restored across
firmware reboots.

18



3 API protocol reference

Log packets have a format that is slightly different from normal protocol messages. The first part of the
UDP payload consists of JSON text, like in normal messages. This is followed by a 0 byte, a binary length
field, and the log text.

Position Length Field

0 N JSON text of length N bytes
N + 0 1 Literal 0 byte (N found by searching for the first 0 byte)
N + 1 2 Little endian uint16_t log text length
N + 2 length ASCII log text, using length field above

This binary length field and log payload is found by searching for a 0 byte. JSON cannot legally contain
a 0 byte.

This format was chosen because we wanted to continue using JSON for its positive properties, all while
reducing deviceMCU load by not having to turn the logmessage into a legal JSON string value (escaping).

The JSON text is an object with the following fields:

Member Type Meaning

command String Contains the string ”raw_log”, otherwise it’s not a log message
pos Integer Log byte position, can be used to detect dropped log messages
overflow Boolean Internal overflow flag (not always present)

The ”pos” field is the number of log bytes output so far. The log receiver can add the packet’s log text
length to the ”pos” field to know the ”pos” field of the next log packet. If the values mismatch, a log
packet must have been dropped or reordered. The value of this field is an unsigned 32 bit integer and
rolls over.

”overflow” indicates that the device log buffer (which is of limited size) overflowed before the contents
could be sent to the network. The ”pos” field is also discontinuous in this case.

3.1.17 link_state (Ethernet ports link state)

The response ”link_state” is an object with the following fields:

Member Type Meaning

list JSON array Actual integer array, see below.

Each item in the ”list” array is an integer value that reflects the link state from the indexed ethernet port
in the hardware.

Link state values:

Value Meaning

0 No link
1 100 Mbps link active
2 1000 Mbps link active
3+ Reserved for future use

19



3 API protocol reference

Example if hardware has two Ethernet ports with the first port being inactive and the second port having
a 100 Mbps link:

Device reply (prettified)

{ "link_state": { "list": [ 0, 1 ] } }

Example if hardware has a single Ethernet port with the port having a 1000 Mbps link:

Device reply (prettified)

{ "link_state": { "list": [ 2 ] } }

3.1.18 Metering mechanism

If the metering parameter is set to true, the device will broadcast separate metering packets to IP
255.255.255.255 on UDP port 7055. The device sends 10 packets per second. The request expires after 1
second. The client should send device_info packets with the metering parameter set to true periodically
every 500 ms to renew the request. This mechanism is not available on the serial UART interface,
because the metering packets are always sent to UDP.

The UPD packets contain JSON text like all API packets:

Member Type Meaning

command String Contains the string ”broadcast_info”, otherwise it’s a different message
device_id String Unique device ID, like in ”device_info” responses.
metering Object Metering information, if present.

The metering object is as follows:

Member Type Meaning

channel_peaks Array Array of (tbd)
channel_overdrive Array Array of (tbd)

3.2 set_params

Write various device settings.

3.2.1 Parameters

This command mirrors a number of fields in the device_info response. All fields are optional, and only
parameters sent with the command are actually set.

See the response fields of the device_info command for type and meaning of each field, and whether it
can be written.

20



3 API protocol reference

3.2.2 Response

Success/error only. If an error happens, and the request contains multiple parameters, it’s possible that
the request is partially applied. In this case, it’s unpredictable which parameters were applied and which
not. Use the device_info command to confirm the new values.

3.2.3 Description

This command can set most fields which appear in device_info. Name, location, JSON data type, and
meaning are exactly the same as the fields in device_info.

If the client needs to change multiple parameters, it’s recommended to set all parameters at once, using
a single ”set_params” command.

3.2.4 Example

This sets the link offset to 64 samples and leaves all other parameters untouched:

User => Device

{"command": "set_params", "stream": { "link_offset": 64 }}

Device reply

{"seq": 0}

This sets multiple fields (set first and second channel sources, set link offset to 48 samples, set memo to
”hello”), and leaves all other parameters untouched:

User => Device

{"command": "set_params", "stream": { "output_channels": [ 0, 1 ], "link_offset": 48 },
"ui": { "memo": "hello" } }

Device reply

{"seq": 0}

3.3 show_rtp_status

Show information about current AES67 streaming (network to device).

3.3.1 Parameters

None.

3.3.2 Response

Member Type Meaning

ip String IP address of source stream.
port Integer UDP port of source stream.

21



3 API protocol reference

Member Type Meaning

clock_offset Integer SDP mediaclk parameter (0 if unset)
link_offset Integer Offset chosen with set_session command.
samplesize Integer Audio sample size in bits per channel
samplerate Integer Audio sample rate
channels Integer Number of channels sent by source stream.
output_channels Array Channels used, as chosen with set_session command.
packet_drops Integer New packet drops since last command.
packet_drop_last_ms Integer Absolute device time of last packet drop in ms. Can wrap around.
rtp_received_last_ms Integer Absolute device time of last RTP audio packet received. Can wrap around.
clock_locked Integer Complete lock. (device_info rtp.lock has more detailed information.)

3.3.3 Description

This shows the status of AES67 streaming, as well as some of the selected parameters.

This command is for debugging, and you should probably not rely on it being present or compatible in
the next firmware version.

3.3.4 Example

User => Device

{"command": "show_rtp_status"}

Device reply

{
"seq": 0,
"ip": "239.69.214.91",
"port": 5004,
"clock_offset": -1479386051,
"link_offset": 64,
"samplesize": 24,
"samplerate": 48000,
"channels": 1,
"output_channels": [
0

],
"packet_drops": 2147483647,
"packet_drop_last_ms": 693922,
"rtp_received_last_ms": 823747,
"clock_locked": true,
"ptp_sync_last_ms": 823543

}

3.4 sap_purge

Remove sessions from the device’s session cache.

22



3 API protocol reference

3.4.1 Parameters

Member Type Meaning

age Float Maximum session age in seconds that should be preserved (older sessions
are deleted). (Default: 60)

blocktime Float Time in seconds during which new SAPs should be ignored. (Default: 0)

3.4.2 Response

Success/error only.

3.4.3 Description

The device caches previously discovered sessions (using the SAP protocol) and hold them in RAM and
on the flash. There is currently a session timeout of 100 seconds, after which a session is automatically
deleted. This command can be used to remove a session immediately. Sometimes, it can help resolving
playback problems by removing broken cache entries.

The ”blocktime” parameter can be set if sap_purge is supposed to be run on all devices in the network.
The problem is that the devices will never execute the command at exactly the same time, and bogus SAP
packets still could be propagating through the network. In particular, devices will send their own bogus
cached/replicated SAPs to all other devices. To avoid that devices immediately readd bogus sessions, this
parameter can disable SAP processing temporarily.

3.5 blink_leds

Let some LEDs blink on the target for some seconds.

3.5.1 Parameters

None.

3.5.2 Response

None.

3.5.3 Description

This command is forwarded to the serial port. This can be used to make it easier for the user to locate
the device. It is recommended to blink all LEDs for three seconds after receiving the command.

3.6 reset_settings

Wipe all settings.

3.6.1 Parameters

None.

3.6.2 Response

None.

23



3 API protocol reference

3.6.3 Description

This resets all user settings, and reboots. Like with the ”reboot” command, no response is sent. The
device_id is not changed.

3.7 reboot

Reboots the device.

3.7.1 Parameters

None.

3.7.2 Response

None.

3.7.3 Description

The device is reset, as if power-cycled. There is no response, because the hardware is reset before a
response can be sent out.

3.7.4 Example

User => Device

{"command": "reboot"}

24



3 API protocol reference

Document version: 56 / Jun 05, 2024 11:46

25


	Introduction
	AVALOT is a AES67 compatible network audio device
	Mediaclock, phase-coherence and PTP
	SAP
	SAP Caching
	Session Identification
	IGMP in consumer switches

	The API protocol
	User => Device
	Device reply
	UART Interface

	Getting started
	Finding the device on the network
	Sending and receiving commands (via CLI on Linux/macOS/msys)
	Setting up audio streaming (via CLI)
	User => Device
	Device reply
	User => device

	Persistence and reboots
	Firmware updates

	API protocol definition
	Basics
	Network layer
	JSON
	Commands
	Reponses
	Extensibility
	Packet drops and reordering
	Retrieving updates and events from a device


	API protocol reference
	device_info
	Description
	Example
	User => Device
	Device reply (prettified)
	Parameters
	Response
	product_id (Product IDs)
	net (Network settings/state)
	ui (UI fields)
	stream (AES67 settings)
	Example using output_channels
	User => Device
	rtp (AES67 manual session)
	Manual session configuration
	Multiple RTP streams with port ranges
	PTP clock selection
	streams (AES67 session list)
	rtp (RTP state)
	logging (Logging state)
	link_state (Ethernet ports link state)
	Device reply (prettified)
	Device reply (prettified)
	Metering mechanism

	set_params
	Parameters
	Response
	Description
	Example
	User => Device
	Device reply
	User => Device
	Device reply

	show_rtp_status
	Parameters
	Response
	Description
	Example
	User => Device
	Device reply

	sap_purge
	Parameters
	Response
	Description

	blink_leds
	Parameters
	Response
	Description

	reset_settings
	Parameters
	Response
	Description

	reboot
	Parameters
	Response
	Description
	Example
	User => Device



